Reciprocal of Power of Complex Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Let $z^n$ denote $z$ raised to the $n$th power.


The reciprocal of $z^n$ can be expressed as:

$\dfrac 1 {z^n} = \dfrac {\overline z^n} {\cmod z^{2 n} }$

where:

$\overline z$ denotes the complex conjugate of $z$
$\cmod z^2$ denotes the modulus of $z$.


Proof

\(\ds \dfrac 1 {z^n}\) \(=\) \(\ds \paren {\dfrac 1 z}^n\)
\(\ds \) \(=\) \(\ds \paren {\dfrac {\overline z} {\cmod z^2} }^n\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {\overline z}^n} {\paren {\cmod z^2}^n}\)
\(\ds \) \(=\) \(\ds \dfrac {\overline z^n} {\cmod z^{2 n} }\)

$\blacksquare$


Sources