Reduction Formula for Integral of Power of Sine/Proof 2
Jump to navigation
Jump to search
Theorem
Let $n \in \Z_{> 0}$ be a (strictly) positive integer.
Then:
- $\ds \int \sin^n x \rd x = \dfrac {n - 1} n \int \sin^{n - 2} x \rd x - \dfrac {\sin^{n - 1} x \cos x} n$
is a reduction formula for $\ds \int \sin^n x \rd x$.
Proof
With a view to expressing the problem in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \sin^{n - 1} x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \paren {n - 1} \sin ^{n - 2} x \cos x\) | Chain Rule for Derivatives, Derivative of Sine Function, Derivative of Power |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds \sin x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds -\cos x\) | Primitive of Sine Function |
Then:
\(\ds \int \sin^n x \rd x\) | \(=\) | \(\ds \int \sin^{n - 1} x \sin x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin^{n - 1} x \paren {-\cos x} - \int \paren {-\cos x} \paren {\paren {n - 1} \sin^{n - 2} x \cos x} \rd x\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {n - 1} \sin^{n - 2} x \cos^2 x \rd x - \sin^{n - 1} x \cos x\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {n - 1} \sin^{n - 2} x \paren {1 - \sin^2 x} \rd x - \sin^{n - 1} x \cos x\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {n - 1} \int \sin^{n - 2} x \rd x - \paren {n - 1} \int \sin^n x \rd x - \sin^{n - 1} x \cos x\) | Linear Combination of Primitives | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds n \int \sin^n x \rd x\) | \(=\) | \(\ds \paren {n - 1} \int \sin^{n - 2} x \rd x - \sin^{n - 1} x \cos x\) | rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \sin^n x \rd x\) | \(=\) | \(\ds \dfrac {n - 1} n \int \sin^{n - 2} x \rd x - \dfrac {\sin^{n - 1} x \cos x} n\) | dividing both sides by $n$ |
$\blacksquare$