Riesz Representation Theorem (Hilbert Spaces)/Examples
Jump to navigation
Jump to search
Examples of Use of Riesz Representation Theorem (Hilbert Spaces)
$L^2$ Space
Let $\struct{ X, \Sigma, \mu }$ be a measure space.
Let $\map {L^2} \mu$ be the associated $L^2$ space.
Let $F: \map {L^2} \mu \to \GF$ be a bounded linear functional.
Then there exists a unique $f_0 \in \map {L^2} \mu$ such that:
- $\ds \forall f \in \map {L^2} \mu: \map F f = \int f \overline{f_0} \rd \mu$
Space of Square Summable Mappings
Let $\map {\ell^2} \N$ be the space of square summable mappings on $\N$.
Let $N \in \N$.
Let $\GF$ be a subfield of $\C$.
Let $L_N: \map {\ell^2} \N \to \GF$ be defined by:
- $\map {L_N} {\sequence{ a_n } } := a_N$
Let $\delta_N \in \map {\ell^2} \N$ be given by:
- $\forall n \in \N: \paren{ \delta_N }_n = \begin{cases} 1 & n = N \\ 0 & n \ne N \end{cases}$
Then:
- $\forall a \in \map {\ell^2} \N: \map {L_N} a = \innerprod a {\delta_N}$
where $\innerprod \cdot \cdot: \map {\ell^2} \N \times \map {\ell^2} \N \to \GF$ denotes the inner product on $\map {\ell^2} \N$.