Riesz Representation Theorem (Hilbert Spaces)
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $H$ be a Hilbert space.
Let $L$ be a bounded linear functional on $H$.
Then there is a unique $h_0 \in H$ such that:
- $\forall h \in H: L h = \innerprod h {h_0}$
Proof
If $L \equiv 0$ identically, then:
- $L h = 0 = \innerprod h 0$
and the theorem holds.
By Kernel of Bounded Linear Transformation is Closed Linear Subspace:
- $M := \ker L$ is a closed linear subspace of $H$.
Then we can decompose $H$ as a direct sum:
- $H \cong M \oplus M^\perp$
where $M^\perp$ denotes the orthocomplement of $M$.
From:
- $L \not \equiv 0$
we have:
- $M^\perp \ne \set 0$
Choose a $z \in M^\perp$ with norm $1$.
By linearity of $L$, for any $h \in H$:
\(\ds L \paren {z L h - h L z}\) | \(=\) | \(\ds L z L h - L h L z\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
So:
- $z L h - h L z \in \ker L = M$
Then:
\(\ds L h\) | \(=\) | \(\ds L h \innerprod z z\) | as $\norm z = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod {z L h} z\) | linearity in the first argument | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod {z L h - h L z + h L z} z\) | adding and subtracting $h L z$ in the first argument | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod {z L h - h L z} z + \innerprod {h L z} z\) | linearity in the first argument | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod {h L z} z\) | $z L h - h L z \in M, z \in M^\perp$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod h {z \paren {L z}^*}\) | conjugate symmetry |
Thus:
- $L h = \innerprod h {h_0}$
for $h_0 = z \paren {L z}^*$.
To show uniqueness, assume $h_0$ and $h_1$ both satisfy the above equation for all $h \in H$:
\(\ds \innerprod h {h_0}\) | \(=\) | \(\ds \innerprod h {h_1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \innerprod h {h_0} - \innerprod h {h_1}\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \innerprod h {h_0 - h_1}\) | additivity in the second argument |
The result follows from setting $h = h_0 - h_1$ and invoking the positive definiteness of the inner product.
$\blacksquare$
Examples
$L^2$ Space
Let $\struct{ X, \Sigma, \mu }$ be a measure space.
Let $\map {L^2} \mu$ be the associated $L^2$ space.
Let $F: \map {L^2} \mu \to \GF$ be a bounded linear functional.
Then there exists a unique $f_0 \in \map {L^2} \mu$ such that:
- $\ds \forall f \in \map {L^2} \mu: \map F f = \int f \overline{f_0} \rd \mu$
Space of Square Summable Mappings
Let $\map {\ell^2} \N$ be the space of square summable mappings on $\N$.
Let $N \in \N$.
Let $\GF$ be a subfield of $\C$.
Let $L_N: \map {\ell^2} \N \to \GF$ be defined by:
- $\map {L_N} {\sequence{ a_n } } := a_N$
Let $\delta_N \in \map {\ell^2} \N$ be given by:
- $\forall n \in \N: \paren{ \delta_N }_n = \begin{cases} 1 & n = N \\ 0 & n \ne N \end{cases}$
Then:
- $\forall a \in \map {\ell^2} \N: \map {L_N} a = \innerprod a {\delta_N}$
where $\innerprod \cdot \cdot: \map {\ell^2} \N \times \map {\ell^2} \N \to \GF$ denotes the inner product on $\map {\ell^2} \N$.
Source of Name
This entry was named for Frigyes Riesz.
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next): $\text{I}$ Hilbert Spaces: $\S 3.$ The Riesz Representation Theorem: $3.4$ The Riesz Representation Theorem