Roots of Complex Number/Examples/Square Roots of 2 root 3 - 2i

From ProofWiki
Jump to navigation Jump to search

Example of Roots of Complex Number

The complex square roots of $2 \sqrt 3 - 2 i$ are given by:

$\paren {2 \sqrt 3 - 2 i}^{1/2} = \set {2 \cis 165 \degrees, 2 \cis 345 \degrees}$


Proof

Complex Square Roots of 2 root 3 - 2i.png


Let $z^2 = 2 \sqrt 3 - 2 i$.

We have that:

$z^2 = 4 \paren {\dfrac {\sqrt 3} 2 - \dfrac 1 2 i}$

and it is seen (indirectly) from Cube Roots of Unity that:

$\dfrac {\sqrt 3} 2 - \dfrac 1 2 i = \cis \dfrac {11 \pi} 6$


Hence

\(\ds z^2\) \(=\) \(\ds 4 \cis \dfrac {11 \pi} 6\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \sqrt 4 \, \paren {\cis \dfrac {11 \pi} {12} + k \pi}\) where $k = 0, 1$
\(\ds \) \(=\) \(\ds 2 \cis \dfrac {11 \pi} {12} \text { and } 2 \cis \dfrac {23 \pi} {12}\)
\(\ds \) \(=\) \(\ds 2 \cis 165 \degrees \text { and } 2 \cis 345 \degrees\)

$\blacksquare$


Sources