Roots of Complex Number/Examples/Square Roots of 2 root 3 - 2i
Jump to navigation
Jump to search
Example of Roots of Complex Number
The complex square roots of $2 \sqrt 3 - 2 i$ are given by:
- $\paren {2 \sqrt 3 - 2 i}^{1/2} = \set {2 \cis 165 \degrees, 2 \cis 345 \degrees}$
Proof
Let $z^2 = 2 \sqrt 3 - 2 i$.
We have that:
- $z^2 = 4 \paren {\dfrac {\sqrt 3} 2 - \dfrac 1 2 i}$
and it is seen (indirectly) from Cube Roots of Unity that:
- $\dfrac {\sqrt 3} 2 - \dfrac 1 2 i = \cis \dfrac {11 \pi} 6$
Hence
\(\ds z^2\) | \(=\) | \(\ds 4 \cis \dfrac {11 \pi} 6\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \sqrt 4 \, \paren {\cis \dfrac {11 \pi} {12} + k \pi}\) | where $k = 0, 1$ | ||||||||||
\(\ds \) | \(=\) | \(\ds 2 \cis \dfrac {11 \pi} {12} \text { and } 2 \cis \dfrac {23 \pi} {12}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \cis 165 \degrees \text { and } 2 \cis 345 \degrees\) |
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: Roots of Complex Numbers: $95 \ \text{(a)}$