Seminorm Maps Zero Vector to Zero

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {K, +, \circ}$ be a division ring with norm $\norm {\,\cdot\,}_K$.

Let $X$ be a vector space over $\struct {K, \norm {\,\cdot\,}_K}$.

Let $\mathbf 0_X$ be the zero vector of $X$.

Let $p$ be a seminorm on $X$.


Then $\map p {\mathbf 0_X} = 0$.


Proof

We have:

\(\ds \map p {\mathbf 0_X}\) \(=\) \(\ds \map p {0 \circ \mathbf 0_X}\) Zero Vector Scaled is Zero Vector
\(\ds \) \(=\) \(\ds \norm 0_K \map p {\mathbf 0_X}\) $(\text N 2)$ in Definition of Seminorm
\(\ds \) \(=\) \(\ds 0 \; \map p {\mathbf 0_X}\) $(\text N 1)$ in Definition of Norm on Division Ring
\(\ds \) \(=\) \(\ds 0\)

$\blacksquare$