Series Expansion of Bessel Function of the First Kind
Jump to navigation
Jump to search
Theorem
Let $n \in \Z_{\ge 0}$ be a (strictly) non-negative integer.
Let $\map {J_n} x$ denote the Bessel function of the first kind of order $n$.
Then:
\(\ds \map {J_n} x\) | \(=\) | \(\ds \dfrac {x^n} {2^n \, \map \Gamma {n + 1} } \paren {1 - \dfrac {x^2} {2 \paren {2 n + 2} } + \dfrac {x^4} {2 \times 4 \paren {2 n + 2} \paren {2 n + 4} } - \cdots}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {k! \, \map \Gamma {n + k + 1} } \paren {\dfrac x 2}^{n + 2 k}\) |
Negative Index
\(\ds \map {J_{-n} } x\) | \(=\) | \(\ds \dfrac {x^{-n} } {2^{-n} \, \map \Gamma {1 - n} } \paren {1 - \dfrac {x^2} {2 \paren {2 - 2 n} } + \dfrac {x^4} {2 \times 4 \paren {2 - 2 n} \paren {4 - 2 n} } - \cdots}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {k! \, \map \Gamma {k + 1 - n} } \paren {\dfrac x 2}^{2 k - n}\) |
Proof
We employ Frobenius's method to find the solutions to the Bessel's Equation:
- $x^2 \dfrac {\d^2 y} {\d x^2} + x \dfrac {\d y} {\d x} + \paren {x^2 - n^2} y = 0$
for $n \ge 0$, in the form:
- $\ds \map y x = \sum_{k \mathop = 0}^\infty A_k x^{k + r}$
defined on $x > 0$, for some constants $r, A_i$, with $A_0 \ne 0$, which are to be determined.
Differentiating the expression with respect to $x$:
\(\ds \map {y'} x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {k + r} x^{k + r - 1}\) | ||||||||||||
\(\ds \map {y' '} x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {k + r} \paren {k + r - 1} x^{k + r - 2}\) |
Substituting $y, y', y' '$ into Bessel's Equation:
\(\ds 0\) | \(=\) | \(\ds x^2 \dfrac {\d^2 y} {\d x^2} + x \dfrac {\d y} {\d x} + \paren {x^2 - n^2} y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^2 \sum_{k \mathop = 0}^\infty A_k \paren {k + r} \paren {k + r - 1} x^{k + r - 2} + x \sum_{k \mathop = 0}^\infty A_k \paren {k + r} x^{k + r - 1} + \paren {x^2 - n^2} \sum_{k \mathop = 0}^\infty A_k x^{k + r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {k + r} \paren {k + r - 1} x^{k + r} + \sum_{k \mathop = 0}^\infty A_k \paren {k + r} x^{k + r} + \sum_{k \mathop = 0}^\infty A_k x^{k + r + 2} - n^2 \sum_{k \mathop = 0}^\infty A_k x^{k + r}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {\paren {k + r} \paren {k + r - 1} + \paren {k + r} - n^2} x^{k + r} + \sum_{k \mathop = 0}^\infty A_k x^{k + r + 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {\paren {k + r}^2 - n^2} x^{k + r} + \sum_{k \mathop = 0}^\infty A_k x^{k + r + 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {\paren {k + r}^2 - n^2} x^{k + r} + \sum_{k \mathop = 2}^\infty A_{k - 2} x^{k + r}\) | Translation of Index Variable of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k \paren {\paren {k + r}^2 - n^2} x^k + \sum_{k \mathop = 2}^\infty A_{k - 2} x^k\) | $x^r \neq 0$ |
Comparing the constant term on both sides:
\(\ds 0\) | \(=\) | \(\ds A_0 \paren {r^2 - n^2}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds r\) | \(=\) | \(\ds \pm n\) |
Take $r = n$.
Comparing the rest of the coefficients:
\(\ds 0\) | \(=\) | \(\ds A_1 \paren {\paren{n + 1}^2 - n^2}\) | ||||||||||||
\(\ds 0\) | \(=\) | \(\ds A_1 \paren {2 n + 1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds A_1\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds 0\) | \(=\) | \(\ds A_k \paren {\paren{n + k}^2 - n^2} + A_{k - 2}\) | for $k \ge 2$ | |||||||||||
\(\ds 0\) | \(=\) | \(\ds A_k k \paren {2 n + k} + A_{k - 2}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds A_k\) | \(=\) | \(\ds - \dfrac 1 {k \paren {2 n + k} } A_{k - 2}\) |
From the recurrence relation above, we see that $A_k = 0$ for odd $k$, and:
\(\ds A_{2 k}\) | \(=\) | \(\ds - \dfrac 1 {2 k \paren {2 n + 2 k} } A_{2 k - 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {-1} {2^2 k \paren {n + k} } A_{2 k - 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {-1}^2} {2^4 k \paren {k - 1} \paren {n + k} \paren {n + k - 1} } A_{2 k - 4}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {-1}^k} {2^{2 k} k \paren {k - 1} \cdots \paren 1 \paren {n + k} \paren {n + k - 1} \cdots \paren {n + 1} } A_0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {-1}^k} {2^{2 k} k! \dfrac {\map \Gamma {n + k + 1} } {\map \Gamma {n + 1} } } A_0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {-1}^k} {2^{n + 2 k} k! \, \map \Gamma {n + k + 1} }\) | By choice of $A_0 = \dfrac {2^{- n} } {\map \Gamma {n + 1} }$ |
Substituting this result to our original equation:
\(\ds \map y x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_k x^{k + n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty A_{2 k} x^{2 k + n}\) | since all even terms vanish | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {2^{n + 2 k} k! \, \map \Gamma {n + k + 1} } x^{2 k + n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {-1}^k} {k! \, \map \Gamma {n + k + 1} } \paren {\dfrac x 2}^{2 k + n}\) |
$\blacksquare$
Also see
- Bessel Function of the First Kind of Negative Integer Order for when $n \in \set {-1, -2, -3, \ldots}$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Some Special Functions: $\text {II}$. Bessel functions
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 24$: Bessel Functions: Bessel Function of the First Kind of Order $n$: $24.2$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Bessel functions
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Bessel functions
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 27$: Bessel Functions: Bessel Function of the First Kind of Order $n$: $27.2.$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Bessel function