Sets of Operations on Set of 3 Elements/Automorphism Group of B

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S = \set {a, b, c}$ be a set with $3$ elements.

Let $\BB$ be the set of all operations $\circ$ on $S$ such that the group of automorphisms of $\struct {S, \circ}$ forms the set $\set {I_S, \tuple {a, b, c}, \tuple {a, c, b} }$, where $I_S$ is the identity mapping on $S$.


Then:

$\BB$ has $3^3 - 3$ elements.


Isomorphism Classes

Let $\oplus \in \BB$.

Then the isomorphism class of $\oplus$ consists of $\oplus$ and exactly one other operation $\otimes$ on $S$ such that $\otimes \in \BB$.

That is, the elements of $\BB$ are in doubleton isomorphism classes each of which is a subset of $\BB$.


Operations with Identity

None of the operations of $\BB$ has an identity element.


Commutative Operations

Exactly $8$ of the operations of $\BB$ is commutative.


Proof

Recall the definition of (group) automorphism:

$\phi$ is an automorphism on $\struct {S, \circ}$ if and only if:
$\phi$ is a permutation of $S$
$\phi$ is a homomorphism on $\struct {S, \circ}$: $\forall a, b \in S: \map \phi {a \circ b} = \map \phi a \circ \map \phi b$


From Identity Mapping is Group Automorphism, $I_S$ is always an automorphism on $\struct {S, \circ}$.

Hence it is not necessary to analyse the effect of $I_S$ on $S$.


Let us denote each of the remaining elements of $\set {I_S, \tuple {a, b, c}, \tuple {a, c, b} }$ as follows:

\(\ds p\) \(:\) \(\ds \map p a = b, \map p b = c, \map p c = a\)
\(\ds q\) \(:\) \(\ds \map q a = c, \map q b = a, \map q c = b\)


We select various product elements $x \circ y \in S$ and determine how $p$ and $q$ constrain other product elements as follows:


Then by definition of the above mappings $p$ and $q$, and the definition of a homomorphism, we obtain as follows:


$(1)
\quad a \circ a$
\(\ds a \circ a\) \(=\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p a\) \(=\) \(\ds \map p a\)
\(\ds \leadsto \ \ \) \(\ds b \circ b\) \(=\) \(\ds b\)
\(\ds \map q a \circ \map q a\) \(=\) \(\ds \map q a\)
\(\ds \leadsto \ \ \) \(\ds c \circ c\) \(=\) \(\ds c\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & a & & \\ b & & b & \\ c & & & c \\ \end {array}$

\(\ds a \circ a\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p a\) \(=\) \(\ds \map p b\)
\(\ds \leadsto \ \ \) \(\ds b \circ b\) \(=\) \(\ds c\)
\(\ds \map q a \circ \map q a\) \(=\) \(\ds \map q b\)
\(\ds \leadsto \ \ \) \(\ds c \circ c\) \(=\) \(\ds a\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & b & & \\ b & & c & \\ c & & & a \\ \end {array}$

\(\ds a \circ a\) \(=\) \(\ds c\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p a\) \(=\) \(\ds \map p c\)
\(\ds \leadsto \ \ \) \(\ds b \circ b\) \(=\) \(\ds a\)
\(\ds \map q a \circ \map q a\) \(=\) \(\ds \map q c\)
\(\ds \leadsto \ \ \) \(\ds c \circ c\) \(=\) \(\ds b\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & c & & \\ b & & a & \\ c & & & b \\ \end {array}$

So selecting $a \circ a$ fixes $b \circ b$ and $c \circ c$.


$(2)
\quad a \circ b$
\(\ds a \circ b\) \(=\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p b\) \(=\) \(\ds \map p a\)
\(\ds \leadsto \ \ \) \(\ds b \circ c\) \(=\) \(\ds b\)
\(\ds \map q a \circ \map q b\) \(=\) \(\ds \map q a\)
\(\ds \leadsto \ \ \) \(\ds c \circ a\) \(=\) \(\ds c\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & & a & \\ b & & & b \\ c & c & & \\ \end {array}$

\(\ds a \circ b\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p b\) \(=\) \(\ds \map p b\)
\(\ds \leadsto \ \ \) \(\ds b \circ c\) \(=\) \(\ds c\)
\(\ds \map q a \circ \map q b\) \(=\) \(\ds \map q b\)
\(\ds \leadsto \ \ \) \(\ds c \circ a\) \(=\) \(\ds a\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & & b & \\ b & & & c \\ c & a & & \\ \end {array}$

\(\ds a \circ b\) \(=\) \(\ds c\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p b\) \(=\) \(\ds \map p c\)
\(\ds \leadsto \ \ \) \(\ds b \circ c\) \(=\) \(\ds a\)
\(\ds \map q a \circ \map q b\) \(=\) \(\ds \map q c\)
\(\ds \leadsto \ \ \) \(\ds c \circ a\) \(=\) \(\ds b\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & & c & \\ b & & & a \\ c & b & & \\ \end {array}$

So selecting $a \circ b$ fixes $b \circ c$ and $c \circ a$.


$(3)
\quad a \circ c$
\(\ds a \circ c\) \(=\) \(\ds a\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p c\) \(=\) \(\ds \map p a\)
\(\ds \leadsto \ \ \) \(\ds b \circ a\) \(=\) \(\ds b\)
\(\ds \map q a \circ \map q c\) \(=\) \(\ds \map q a\)
\(\ds \leadsto \ \ \) \(\ds c \circ b\) \(=\) \(\ds c\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & & & a \\ b & b & & \\ c & & c & \\ \end {array}$

\(\ds a \circ c\) \(=\) \(\ds b\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p c\) \(=\) \(\ds \map p b\)
\(\ds \leadsto \ \ \) \(\ds b \circ a\) \(=\) \(\ds c\)
\(\ds \map q a \circ \map q c\) \(=\) \(\ds \map q b\)
\(\ds \leadsto \ \ \) \(\ds c \circ b\) \(=\) \(\ds a\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & & & b \\ b & c & & \\ c & & a & \\ \end {array}$

\(\ds a \circ c\) \(=\) \(\ds c\)
\(\ds \leadsto \ \ \) \(\ds \map p a \circ \map p c\) \(=\) \(\ds \map p c\)
\(\ds \leadsto \ \ \) \(\ds b \circ a\) \(=\) \(\ds a\)
\(\ds \map q a \circ \map q c\) \(=\) \(\ds \map q c\)
\(\ds \leadsto \ \ \) \(\ds c \circ b\) \(=\) \(\ds b\)
$\begin {array} {c|ccc}

\circ & a & b & c \\ \hline a & & & c \\ b & a & & \\ c & & b & \\ \end {array}$

So selecting $a \circ c$ fixes $b \circ a$ and $c \circ b$.


There are $3$ elements $x$ of $S$ with which $a \circ x$ can be made.

For each of these $3$, there are $3$ different elements $y$ such that $a \circ x = y$.

These collectively fix all the possible values of $b \circ x$ and $c \circ x$.

Hence they exhaust all possible operations $\circ$ on $S$ for which $p$ and $q$ are automorphisms.

Thus there are independently:

$3$ different options for $a \circ a$
$3$ different options for $a \circ b$
$3$ different options for $a \circ c$

and therefore $3 \times 3 \times 3 = 3^3$ operations $\circ$ on $S$ for which $p$ and $q$ are automorphisms.


Note that from Automorphism Group of $\AA$, $3$ of these are also such that the group of automorphisms of $\struct {S, \circ}$ is the symmetric group on $S$.

So these are excluded from our count.

The result follows.

$\blacksquare$


Sources