Sine Function is Absolutely Convergent/Complex Case/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The complex sine function $\sin: \C \to \C$ is absolutely convergent.


Proof

The definition of the complex sine function is:

$\ds \forall z \in \C: \sin z = \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {z^{2 n + 1} } {\paren {2 n + 1}!}$

By definition of absolutely convergent complex series, we must show that the power series

$\ds \sum_{n \mathop = 0}^\infty \size {\paren {-1}^n \frac {z^{2 n + 1} } {\paren {2 n + 1}!} }$

is convergent.

We have

\(\ds \ds \sum_{n \mathop = 0}^\infty \size {\paren {-1}^n \frac {z^{2 n + 1} } {\paren {2 n + 1}!} }\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\size z^{2 n + 1} } {\paren {2 n + 1}!}\)
\(\ds \) \(\le\) \(\ds \sum_{n \mathop = 0}^\infty \paren{ \frac {\size z^{2 n + 1} } {\paren {2 n + 1}!} + \frac {\size z^{2 n } } {\paren {2 n }!} }\) Squeeze Theorem for Complex Sequences
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\size z^n} {n!}\) changing indices
\(\ds \) \(=\) \(\ds \exp \size z\) Taylor Series Expansion for Exponential Function

The result follows from Squeeze Theorem for Complex Sequences.

$\blacksquare$


Sources