Definition:Absolutely Convergent Series/Complex Numbers

From ProofWiki
Jump to navigation Jump to search

Definition

Let $S = \displaystyle \sum_{n \mathop = 1}^\infty a_n$ be a series in the complex number field $\C$.


Then $S$ is absolutely convergent if and only if:

$\displaystyle \sum_{n \mathop = 1}^\infty \cmod {a_n}$ is convergent

where $\cmod {a_n}$ denotes the complex modulus of $a_n$.


Also see


Examples

Example: $\paren {\dfrac z {1 - z} }^n$

The complex series defined as:

$\displaystyle S = \sum_{n \mathop = 1}^\infty \paren {\dfrac z {1 - z} }^n$

is absolutely convergent, provided $\Re \paren z < \dfrac 1 2$.


Sources