Definition:Absolutely Convergent Series/Complex Numbers
< Definition:Absolutely Convergent Series(Redirected from Definition:Absolutely Convergent Complex Series)
Jump to navigation
Jump to search
Definition
Let $S = \ds \sum_{n \mathop = 1}^\infty a_n$ be a series in the complex number field $\C$.
Then $S$ is absolutely convergent if and only if:
- $\ds \sum_{n \mathop = 1}^\infty \cmod {a_n}$ is convergent
where $\cmod {a_n}$ denotes the complex modulus of $a_n$.
Also see
Examples
Example: $\paren {\dfrac z {1 - z} }^n$
The complex series defined as:
- $\ds S = \sum_{n \mathop = 1}^\infty \paren {\dfrac z {1 - z} }^n$
is absolutely convergent, provided $\Re \paren z < \dfrac 1 2$.
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.3$. Series: $(4.9)$