Sine and Cosine are Periodic on Reals/Sine/Proof 1
Jump to navigation
Jump to search
Theorem
The sine function is periodic with the same period as the cosine function.
Proof
Since Real Cosine Function is Periodic, let $K$ be its period.
Then:
- $\cos K = \map \cos {0 + K} = \cos 0$
Because Cosine of Zero is One:
- $\cos K = 1$
Furthermore:
\(\ds \cos^2 K + \sin^2 K\) | \(=\) | \(\ds 1\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \sin^2 K\) | \(=\) | \(\ds 0\) | $\cos K = 1$ | |||||||||||
\(\ds \sin K\) | \(=\) | \(\ds 0\) |
Then, the following holds:
\(\ds \map \sin {x + K}\) | \(=\) | \(\ds \sin x \cos K + \cos x \sin K\) | Sine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \sin x \cdot 1 + \cos x \cdot 0\) | $\cos K = 1$; $\sin K = 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sin x\) |
Thus $\sin$ is periodic with some period $L \leq K$.
$\Box$
The following also hold:
\(\ds \sin L\) | \(=\) | \(\ds \map \sin {0 + L}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin 0\) | Period of Periodic Real Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Sine of Zero is Zero | |||||||||||
\(\ds \cos L\) | \(=\) | \(\ds \bigvalueat { \dfrac{\d \sin x} {\d x} } {x \mathop = L}\) | Derivative of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \dfrac{\map \sin {L + h} - \map \sin L}{h}\) | Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \dfrac{\map \sin {0 + h} - \map \sin 0}{h}\) | Period of Periodic Real Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \bigvalueat { \dfrac{\d \sin x} {\d x} } {x \mathop = 0}\) | Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos 0\) | Derivative of Sine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | Cosine of Zero is One |
So we may conclude:
\(\ds \map \cos {x + L}\) | \(=\) | \(\ds \cos x \cos L - \sin x \sin L\) | Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x \cdot 1 - \sin x \cdot 0\) | $\cos L = 1$ and $\sin L = 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \cos x\) |
Therefore the period of cosine is at most that of sine:
- $K \leq L$
But if $K \leq L \leq K$ then:
- $K = L$
$\blacksquare$