Skewness of Normal Distribution
Theorem
Let $X$ be a continuous random variable with a normal distribution with parameters $\mu$ and $\sigma^2$ for some $\mu \in \R$ and $\sigma \in \R_{> 0}$.
Then the skewness $\gamma_1$ of $X$ is equal to $0$.
Proof 1
From the definition of skewness:
- $\gamma_1 = \expect {\paren {\dfrac {X - \mu} \sigma}^3}$
From the definition of the normal distribution, $X$ has probability density function:
- $\map {f_X} x = \dfrac 1 {\sigma \sqrt{2 \pi} } \, \map \exp {-\dfrac { \paren {x - \mu}^2} {2 \sigma^2} }$
So, from Expectation of Function of Continuous Random Variable:
- $\ds \gamma_1 = \expect {\paren {\dfrac {X - \mu} \sigma}^3} = \dfrac 1 {\sigma \sqrt{2 \pi} } \int_{-\infty}^\infty \paren {\dfrac {x - \mu} \sigma}^3 \map \exp {-\dfrac { \paren {x - \mu}^2} {2 \sigma^2} } \rd x$
Making a substitution of $u = x - \mu$:
- $\ds \gamma_1 = \dfrac 1 {\sigma \sqrt{2 \pi} } \int_{-\infty}^\infty \paren {\dfrac u \sigma}^3 \map \exp {-\dfrac {u^2} {2 \sigma^2} } \rd u$
We have that:
- $\paren {-u}^3 \map \exp {-\dfrac {\paren {-u}^2} {2 \sigma^2} } = -u^3 \map \exp {-\dfrac {u^2} {2 \sigma^2} }$
So we can see that the integrand is odd.
So, by Definite Integral of Odd Function:
- $\ds \dfrac 1 {\sigma \sqrt{2 \pi} } \int_{-\infty}^\infty \paren {\dfrac u \sigma}^3 \map \exp {-\dfrac {u^2} {2 \sigma^2} } \rd u = 0$
giving:
- $\gamma_1 = 0$
$\blacksquare$
Proof 2
From the definition of skewness, we have:
- $\gamma_1 = \expect {\paren {\dfrac {X - \mu} \sigma}^3}$
where:
- $\mu$ is the expectation of $X$.
- $\sigma$ is the standard deviation of $X$.
By Expectation of Normal Distribution, we have:
- $\mu = \mu$
By Variance of Normal Distribution, we have:
- $\sigma = \sigma$
So:
\(\ds \gamma_1\) | \(=\) | \(\ds \frac {\expect {X^3 - 3 X^2 \mu + 3 X \mu^2 - \mu^3} } {\sigma^3}\) | Cube of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\expect {X^3} - 3 \mu \expect {X^2} + 3 \mu^2 \expect X - \mu^3} {\sigma^3}\) | Expectation is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\expect {X^3} - 3 \mu \paren {\sigma^2 + \mu^2} + 3 \mu^2 \paren \mu - \mu^3} {\sigma^3}\) | Variance of Normal Distribution |
To calculate $\gamma_1$, we must calculate $\expect {X^3}$.
From Moment in terms of Moment Generating Function:
- $\expect {X^n} = \map { {M_X}^{\paren n} } 0$
where $M_X$ is the moment generating function of $X$.
From Moment Generating Function of Normal Distribution: Third Moment:
- $\map { {M_X}' ' '} t = \paren {3 \sigma^2 \paren {\mu + \sigma^2 t} + \paren {\mu + \sigma^2 t}^3} \map \exp {\mu t + \dfrac 1 2 \sigma^2 t^2}$
Setting $t = 0$:
\(\ds \expect {X^3}\) | \(=\) | \(\ds \paren {3 \sigma^2 \paren {\mu + \sigma^2 0} + \paren {\mu + \sigma^2 0}^3} \map \exp {\mu 0 + \dfrac 1 2 \sigma^2 0^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3 \mu \sigma^2 + \mu^3\) | Exponential of Zero |
So:
\(\ds \gamma_1\) | \(=\) | \(\ds \frac {\expect {X^3} - 3 \mu \paren {\sigma^2 + \mu^2} + 3 \mu^2 \paren {\mu} - \mu^3} {\sigma^3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {3 \mu \sigma^2 + \mu^3 } - 3 \mu \paren {\sigma^2 + \mu^2} + 3 \mu^2 \paren {\mu} - \mu^3} {\sigma^3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$