Smallest Pandigital Square

From ProofWiki
Jump to navigation Jump to search

Theorem

The smallest pandigital square is $1 \, 026 \, 753 \, 849$:

$1 \, 026 \, 753 \, 849 = 32 \, 043^2$


Proof

We check all the squares of numbers from $\ceiling {\sqrt {1 \, 023 \, 456 \, 789} } = 31 \, 992$ up to $32 \, 042$, with the following constraints:


Since all these squares has $10$ as its two leftmost digits, the number cannot end with $0$, $1$ or $9$.

A pandigital number is divisible by $9$, so our number must be divisible by $3$.


These constraints leaves us with the following $12$ candidates:

\(\ds 31 \, 992^2\) \(=\) \(\ds 1 \, 023 \, 488 \, 064\)
\(\ds 31 \, 995^2\) \(=\) \(\ds 1 \, 023 \, 680 \, 025\)
\(\ds 31 \, 998^2\) \(=\) \(\ds 1 \, 023 \, 872 \, 004\)
\(\ds 32 \, 004^2\) \(=\) \(\ds 1 \, 024 \, 256 \, 016\)
\(\ds 32 \, 007^2\) \(=\) \(\ds 1 \, 024 \, 448 \, 049\)
\(\ds 32 \, 013^2\) \(=\) \(\ds 1 \, 024 \, 832 \, 169\)
\(\ds 32 \, 016^2\) \(=\) \(\ds 1 \, 025 \, 024 \, 256\)
\(\ds 32 \, 022^2\) \(=\) \(\ds 1 \, 025 \, 408 \, 484\)
\(\ds 32 \, 025^2\) \(=\) \(\ds 1 \, 025 \, 600 \, 625\)
\(\ds 32 \, 028^2\) \(=\) \(\ds 1 \, 025 \, 792 \, 784\)
\(\ds 32 \, 034^2\) \(=\) \(\ds 1 \, 026 \, 177 \, 156\)
\(\ds 32 \, 037^2\) \(=\) \(\ds 1 \, 026 \, 369 \, 369\)

By inspection, none of these numbers are pandigital.

$\blacksquare$


Historical Note

In his Curious and Interesting Numbers, 2nd ed. of $1997$, David Wells attributes this result to Michal Stajsczak, but gives no context.


Sources