Smallest Positive Integer Combination is Greatest Common Divisor/Proof 2
Jump to navigation
Jump to search
Theorem
Let $a, b \in \Z_{>0}$ be (strictly) positive integers.
Let $d \in \Z_{>0}$ be the smallest positive integer such that:
- $d = a s + b t$
where $s, t \in \Z$.
Then:
- $(1): \quad d \divides a \land d \divides b$
- $(2): \quad c \divides a \land c \divides b \implies c \divides d$
where $\divides$ denotes divisibility.
That is, $d$ is the greatest common divisor of $a$ and $b$.
Proof
From Bézout's Identity we have: Let $a, b \in \Z$ such that $a$ and $b$ are not both zero.
Let $\gcd \set {a, b}$ be the greatest common divisor of $a$ and $b$.
Then:
- $\exists x, y \in \Z: a x + b y = \gcd \set {a, b}$
Furthermore, $\gcd \set {a, b}$ is the smallest positive integer combination of $a$ and $b$.
In this instance, $a, b \in \Z_{>0}$ and are therefore both non-zero.
The result then follows by definition of greatest common divisor:
$d = \gcd \set {a, b}$ if and only if:
- $(1): \quad d \divides a \land d \divides b$
- $(2): \quad c \divides a \land c \divides b \implies c \divides d$
$\blacksquare$