Square Root of Complex Number in Cartesian Form/Examples/i

From ProofWiki
Jump to navigation Jump to search

Example of Square Root of Complex Number in Cartesian Form

$\sqrt i = \pm \left({\dfrac {\sqrt 2} 2 + \dfrac {\sqrt 2} 2 i}\right)$


Proof

\(\ds \left({x + i y}\right)^2\) \(=\) \(\ds i\)
\(\ds \leadsto \ \ \) \(\ds x^2\) \(=\) \(\ds \dfrac {0 + \sqrt {0 + 1^2} } 2\) Square Root of Complex Number in Cartesian Form
\(\ds \) \(=\) \(\ds \dfrac 1 2\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \pm \dfrac {\sqrt 2} 2\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \pm \dfrac 1 {2 \times \frac {\sqrt 2} 2}\)
\(\ds \) \(=\) \(\ds \pm \dfrac {\sqrt 2} 2\)

As $2 x y = 1$ it follows that the two solutions are:

$\dfrac {\sqrt 2} 2 + \dfrac {\sqrt 2} 2 i$
$-\dfrac {\sqrt 2} 2 - \dfrac {\sqrt 2} 2 i$


Sources