Square Root of Complex Number in Cartesian Form/Examples/i
Jump to navigation
Jump to search
Example of Square Root of Complex Number in Cartesian Form
- $\sqrt i = \pm \left({\dfrac {\sqrt 2} 2 + \dfrac {\sqrt 2} 2 i}\right)$
Proof
\(\ds \left({x + i y}\right)^2\) | \(=\) | \(\ds i\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^2\) | \(=\) | \(\ds \dfrac {0 + \sqrt {0 + 1^2} } 2\) | Square Root of Complex Number in Cartesian Form | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \pm \dfrac {\sqrt 2} 2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds \pm \dfrac 1 {2 \times \frac {\sqrt 2} 2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \pm \dfrac {\sqrt 2} 2\) |
As $2 x y = 1$ it follows that the two solutions are:
- $\dfrac {\sqrt 2} 2 + \dfrac {\sqrt 2} 2 i$
- $-\dfrac {\sqrt 2} 2 - \dfrac {\sqrt 2} 2 i$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1$. Algebraic Theory of Complex Numbers: Exercise $6 \ \text {(i)}$