Square of Small Repunit is Palindromic

From ProofWiki
Jump to navigation Jump to search

Theorem

The squares of repunits with up to $9$ digits are palindromic.


Proof

\(\ds 1^2\) \(=\) \(\ds 1\)
\(\ds 11^2\) \(=\) \(\ds 121\)
\(\ds 111^2\) \(=\) \(\ds 12 \, 321\)
\(\ds 1111^2\) \(=\) \(\ds 1 \, 234 \, 321\)
\(\ds 11 \, 111^2\) \(=\) \(\ds 123 \, 454 \, 321\)
\(\ds 111 \, 111^2\) \(=\) \(\ds 12 \, 345 \, 654 \, 321\)
\(\ds 1 \, 111 \, 111^2\) \(=\) \(\ds 1 \, 234 \, 567 \, 654 \, 321\)
\(\ds 11 \, 111 \, 111^2\) \(=\) \(\ds 123 \, 456 \, 787 \, 654 \, 321\)
\(\ds 111 \, 111 \, 111^2\) \(=\) \(\ds 12 \, 345 \, 678 \, 987 \, 654 \, 321\)

but:

$1 \, 111 \, 111 \, 111^2 = 1 \, 234 \, 567 \, 900 \, 987 \, 654 \, 321$

$\blacksquare$


Sources