Standard Parity Check Matrix/Examples/(7, 3) code in Z2
Example of Standard Parity Check Matrix
Let $C$ be the linear $\tuple {7, 3}$-code in $\Z_2$ whose standard generator matrix $G$ is given by:
- $G := \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$
Its standard parity check matrix $P$ is given by:
- $P := \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0 & 1 & 0 & 0\\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$
Proof
Expressing $G$ in the form:
- $G = \paren {\begin{array} {c|c} \mathbf I_k & \mathbf A \end{array} }$
it is seen that:
- $\mathbf A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$
It is noted that $\mathbf A^\intercal$ is:
- $\mathbf A^\intercal = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ \end{pmatrix}$
as $\mathbf A$ is symmetrical about the main diagonal.
Then each of the elements of $\Z_2$ is self-inverse, so:
- $-\mathbf A^\intercal = \mathbf A^\intercal$
Its Syndrome Decoding table is:
- $\begin{array} {cc} 0000000 & 0000 \\ 1000000 & 1101 \\ 0100000 & 1110 \\ 0010000 & 1011 \\ 0001000 & 1000 \\ 0000100 & 0100 \\ 0000010 & 0010 \\ 0000001 & 0001 \\ 0000011 & 0011 \\ 0000101 & 0101 \\ 0000110 & 0110 \\ 0000111 & 0111 \\ 0001001 & 1001 \\ 0001010 & 1010 \\ 0001100 & 1100 \\ 0001111 & 1111 \\ \end{array}$
The syndrome of $1100011$ is $1101 + 1110 + 0011 = 0000$, so $1100011$ is a codeword of $C$.
The syndrome of $1011000$ is $1101 + 1011 + 1000 = 1110$, so $1011000$ corrects to $1011000 - 0100000 = 1111000$.
The syndrome of $0101110$ is $1110 + 1100 + 0010 = 0000$, so $0101110$ is a codeword of $C$.
The syndrome of $0110001$ is $1110 + 1011 + 0001 = 0100$, so $0110001$ corrects to $0110001 - 0000100 = 0110101$.
The syndrome of $1010110$ is $1101 + 1011 + 0110 = 0000$, so $0101110$ is a codeword of $C$.
$\blacksquare$
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $6$: Error-correcting codes: Exercise $5$