State on Unital C*-Subalgebra extends to whole C*-Algebra
Theorem
Let $\struct {A, \ast, \norm {\, \cdot \,} }$ be a unital $\text C^\ast$-algebra.
Let $B$ be a unital $\text C^\ast$-subalgebra of $A$.
Let $f_1 : B \to \C$ be a state.
Then there exists a state $f : A \to \C$ extending $f_1$.
Proof
Let $\le_A$ be the canonical preordering of $A$.
Let $B_{\mathbf {SA} }$ and $A_{\mathbf {SA} }$ be the set of Hermitian elements of $B$ and $A$ respectively.
From Hermitian Elements of *-Algebra form Real Vector Subspace, these are vector spaces over $\R$.
From Bounds on Hermitian Element of Unital C*-Algebra in terms of Bounds on Spectrum, for each $a \in A_{\mathbf {SA} }$ we have:
- $a \le_A \norm a {\mathbf 1}_A$
where $\norm a {\mathbf 1}_A \in B_{\mathbf {SA} }$.
Hence $B_{\mathbf {SA} }$ is cofinal in the preordered vector space $\struct {A_{\mathbf {SA} }, \le_A}$.
From Positive Linear Functional on C*-Algebra preserves Star and Complex Number equals Conjugate iff Wholly Real, $f_1$ is real-valued on $B_{\mathbf {SA} }$.
Hence from Extension Theorem for Positive Linear Functional defined on Cofinal Linear Subspace, there exists a positive linear functional $f_0 : A_{\mathbf {SA} } \to \R$ extending $f_1 \restriction {B_{\mathbf {SA} } }$.
For general $a \in A$, define:
- $\map f a = \map {f_0} {\map \Re a} + i \map {f_0} {\map \Im a}$
For $b \in B$, we have:
\(\ds \map f b\) | \(=\) | \(\ds \map {f_0} {\map \Re b} + i \map {f_0} {\map \Im b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_1} {\map \Re b} + i \map {f_1} {\map \Im b}\) | $f_0 \restriction B_{\mathbf{SA} } = f_1 \restriction B_{\mathbf{SA} }$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_1} {\map \Re b + i \map \Im b}\) | $f_1$ is linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_1} b\) | Element of *-Algebra Uniquely Decomposes into Hermitian Elements |
Hence $f$ extends $f_1$.
We show that $f$ is as desired.
We first show that $f$ is linear.
Firstly, for $a \in A$ we have:
\(\ds \map f {i a}\) | \(=\) | \(\ds \map {f_0} {\map \Re {i a} } + i \map {f_0} {\map \Im {ia} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_0} {-\map \Im a} + i \map {f_0} {\map \Re a}\) | Real Part of Imaginary Unit times Element of *-Algebra, Imaginary Part of Imaginary Unit times Element of *-Algebra | |||||||||||
\(\ds \) | \(=\) | \(\ds i \map {f_0} {\map \Re a} - \map {f_0} {\map \Im a}\) | since $f_0$ is linear | |||||||||||
\(\ds \) | \(=\) | \(\ds i \paren {\map {f_0} {\map \Re a} + i \map {f_0} {\map \Im a} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds i \map f a\) |
Now let $a \in A$ and $\lambda \in \R$, we have that:
\(\ds \map f {\lambda a}\) | \(=\) | \(\ds \map {f_0} {\map \Re {\lambda a} } + i \map {f_0} {\map \Im {\lambda a} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_0} {\lambda \map \Re a} + i \map {f_0} {\lambda \map \Im a}\) | Real Part of Element of *-Algebra is Real Linear and Imaginary Part of Element of *-Algebra is Real Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \paren {\map {f_0} {\map \Re a} + i \map {f_0} {\map \Im a} }\) | $f_0$ is linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \map f a\) |
We also have, for $a, b \in A$:
\(\ds \map f {a + b}\) | \(=\) | \(\ds \map {f_0} {\map \Re {a + b} } + i \map {f_0} {\map \Im {a + b} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_0} {\map \Re a + \map \Re b} + i \map {f_0} {\map \Im a + \map \Im b}\) | Real Part of Element of *-Algebra is Real Linear and Imaginary Part of Element of *-Algebra is Real Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map {f_0} {\map \Re a} + i \map {f_0} {\map \Im a} } + \paren {\map {f_0} {\map \Re b} + i \map {f_0} {\map \Im b} }\) | $f_0$ is linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \map f a + \map f b\) |
Hence for $a, b \in A$ and $\lambda \in \C$ we have:
\(\ds \map f {a + \lambda b}\) | \(=\) | \(\ds \map f a + \map f {\paren {\map \Re \lambda + i \map \Im \lambda} b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f a + \map \Re \lambda \map f b + \map \Im \lambda \map f {i b}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f a + \map \Re \lambda \map f b + i \map \Im \lambda \map f b\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f a + \paren {\map \Re \lambda + i \map \Im \lambda} \map f b\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map f a + \lambda \map f b\) |
For $a \in A$ positive, we have:
- $\map f a = \map {f_0} a \ge 0$
Hence $f$ is a positive linear functional.
From Norm of Positive Linear Functional on Unital C*-Algebra, we have:
\(\ds \norm f_{A^\ast}\) | \(=\) | \(\ds \map f { {\mathbf 1}_A}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_1} { {\mathbf 1}_A}\) | Identity Element in Unital *-Algebra is Hermitian | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {f_0} { {\mathbf 1}_B}\) | $B$ is unital | |||||||||||
\(\ds \) | \(=\) | \(\ds \norm {f_0}_{B^\ast}\) | Norm of Positive Linear Functional on Unital C*-Algebra | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) | Norm of Positive Linear Functional on Unital C*-Algebra |
Hence $f$ is a state that extends $f_0$ as required.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next) $\text {VIII}.5.16$