Sum of Sequence of Cubes/Proof by Induction
Jump to navigation
Jump to search
Theorem
- $\ds \sum_{i \mathop = 1}^n i^3 = \paren {\sum_{i \mathop = 1}^n i}^2 = \frac {n^2 \paren {n + 1}^2} 4$
Proof
First, from Closed Form for Triangular Numbers:
- $\ds \sum_{i \mathop = 1}^n i = \frac {n \paren {n + 1} } 2$
So:
- $\ds \paren {\sum_{i \mathop = 1}^n i}^2 = \dfrac {n^2 \paren {n + 1}^2} 4$
Next we use induction on $n$ to show that:
- $\ds \sum_{i \mathop = 1}^n i^3 = \dfrac {n^2 \paren {n + 1}^2} 4$
The proof proceeds by induction.
For all $n \in \Z_{>0}$, let $\map P n$ be the proposition:
- $\ds \sum_{i \mathop = 1}^n i^3 = \dfrac {n^2 \paren {n + 1}^2} 4$
Basis for the Induction
$\map P 1$ is the case:
- $1^3 = \dfrac {1 \paren {1 + 1}^2} 4$
\(\ds \sum_{i \mathop = 1}^1 i^3\) | \(=\) | \(\ds 1^3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {1^2 \paren {1 + 1}^2} 4\) |
Thus $\map P 1$ is seen to hold.
This is the basis for the induction.
Induction Hypothesis
Now it needs to be shown that if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is the induction hypothesis:
- $\ds \sum_{i \mathop = 1}^k i^3 = \dfrac {k^2 \paren {k + 1}^2} 4$
from which it is to be shown that:
- $\ds \sum_{i \mathop = 1}^{k + 1} i^3 = \dfrac {\paren {k + 1}^2 \paren {k + 2}^2} 4$
Induction Step
This is the induction step:
\(\ds \sum_{i \mathop = 1}^{k + 1} i^3\) | \(=\) | \(\ds \sum_{i \mathop = 1}^k i^3 + \paren {k + 1}^3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {k^2 \paren {k + 1}^2} 4 + \paren {k + 1}^3\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {k^4 + 2 k^3 + k^2} 4 + \frac {4 k^3 + 12 k^2 + 12 k + 4} 4\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {k^4 + 6 k^3 + 13 k^2 + 12 k + 4} 4\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {k + 1}^2 \paren {k + 2}^2} 4\) |
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\forall n \in \Z_{>0}: \ds \sum_{i \mathop = 1}^n i^3 = \dfrac {n^2 \paren {n + 1}^2} 4$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text I$. Algebra: The Method of Induction: Exercises $\text {II}$: $1$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 3$: Natural Numbers: Exercise $\S 3.11 \ (1) \ \text{(ii)}$
- 1979: John E. Hopcroft and Jeffrey D. Ullman: Introduction to Automata Theory, Languages, and Computation ... (previous) ... (next): Chapter $1$: Preliminaries: Exercises: $1.2 \ \text {b)}$
- 1980: David M. Burton: Elementary Number Theory (revised ed.) ... (previous) ... (next): Chapter $1$: Some Preliminary Considerations: $1.1$ Mathematical Induction: Problems $1.1$: $1 \ \text {(e)}$