Sum of Squares of Sine and Cosine/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos^2 x + \sin^2 x = 1$


Proof

From the trigonometric definitions of sine and cosine:

\(\ds \sin x\) \(=\) \(\ds \frac{\text{opposite} } {\text{hypotenuse} }\)
\(\ds \cos x\) \(=\) \(\ds \frac{\text{adjacent} } {\text{hypotenuse} }\)

Then:

\(\ds \sin^2 x + \cos^2 x\) \(=\) \(\ds \frac{\text{opposite}^2 + \text{adjacent}^2} {\text{hypotenuse}^2}\) squaring both sides and adding
\(\ds \) \(=\) \(\ds \frac{\text{hypotenuse}^2} {\text{hypotenuse}^2}\) Pythagoras's Theorem
\(\ds \) \(=\) \(\ds 1\)

$\blacksquare$


Sources