Sum of Squares of Sine and Cosine/Proof 2
Jump to navigation
Jump to search
Theorem
- $\cos^2 x + \sin^2 x = 1$
Proof
From the trigonometric definitions of sine and cosine:
\(\ds \sin x\) | \(=\) | \(\ds \frac{\text{opposite} } {\text{hypotenuse} }\) | ||||||||||||
\(\ds \cos x\) | \(=\) | \(\ds \frac{\text{adjacent} } {\text{hypotenuse} }\) |
Then:
\(\ds \sin^2 x + \cos^2 x\) | \(=\) | \(\ds \frac{\text{opposite}^2 + \text{adjacent}^2} {\text{hypotenuse}^2}\) | squaring both sides and adding | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac{\text{hypotenuse}^2} {\text{hypotenuse}^2}\) | Pythagoras's Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Definitions of the ratios