Sum of Trigonometric Functions over Power
Jump to navigation
Jump to search
![]() | This page has been identified as a candidate for refactoring of basic complexity. In particular: 3 results here, each needs to go in its own page Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
Theorem
\(\text {(1)}: \quad\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n}\) | \(=\) | \(\ds \frac {K \paren {K - \cos 1} } {K^2 - 2 K \cos 1 + 1}\) | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\sin n} {K^n}\) | \(=\) | \(\ds \frac {K \sin 1} {K^2 - 2 K \cos 1 + 1}\) | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\sin n} {K^n}\) | \(=\) | \(\ds \paren {\frac {\sin 1} {K - \cos 1} } \sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n}\) |
Proof
First, let:
\(\ds \mathbf A\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n}\) | ||||||||||||
\(\ds \mathbf B\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\sin n} {K^n}\) |
Now, consider:
- $\mathbf A + i \, \mathbf B$
where $i$ is the imaginary unit:
\(\ds \mathbf{A} + i \, \mathbf B\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n} + \sum_{n \mathop = 0}^\infty \frac {i \sin n} {K^n}\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\cos n + i \sin n} {K^n}\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {e^{i n} } {K^n}\) | Euler's Formula | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {\frac {e^i} K}^n\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \frac K {K - e^i}\) | Sum of Infinite Geometric Sequence | ||||||||||||
The plan now is to equate real and imaginary parts of this to re-obtain $\mathbf A$ and $\mathbf B$: | |||||||||||||||
\(\ds \) | \(=\) | \(\ds \frac K {K - \cos 1 - i \sin 1}\) | Euler's Formula | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac K {K - \cos 1 - i \sin 1} \cdot \frac {K - \cos 1 + i \sin 1} {K - \cos 1 + i \sin 1}\) | multiplying by complex conjugate of denominator | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {K \paren {K - \cos 1 + i \sin 1} } {K^2 - 2 K \cos 1 + \cos^2 1 + \sin^2 1}\) | |||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {K \paren {K - \cos 1 + i \sin 1} } {K^2 - 2 K \cos 1 + 1}\) | Sum of Squares of Sine and Cosine | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {K \paren {K - \cos 1} } {K^2 - 2 K \cos 1 + 1} } + i \paren {\frac {K \sin 1} {K^2 - 2 K \cos 1 + 1} }\) |
So equating real and imaginary parts:
\(\ds \mathbf A = \sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n}\) | \(=\) | \(\ds \frac {K \paren {K - \cos 1} } {K^2 - 2 K \cos 1 + 1}\) | ||||||||||||
\(\ds \mathbf B = \sum_{n \mathop = 0}^\infty \frac {\sin n} {K^n}\) | \(=\) | \(\ds \frac {K \sin 1} {K^2 - 2 K \cos 1 + 1}\) |
This proves $(1)$ and $(2)$ respectively.
$(3)$ is proved by finding the quotient of the two results:
\(\ds \frac {\sum_{n \mathop = 0}^\infty \frac {\sin n} {K^n} } {\sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n} }\) | \(=\) | \(\ds \frac {K \sin 1} {K^2 - 2 K \cos 1 + 1} \cdot \frac {K^2 - 2 K \cos 1 + 1} {K \paren {K - \cos 1} } = \frac {\sin 1} {K - \cos 1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 0}^\infty \frac {\sin n} {K^n}\) | \(=\) | \(\ds \paren {\frac {\sin 1} {K - \cos 1} } \sum_{n \mathop = 0}^\infty \frac {\cos n} {K^n}\) |
$\blacksquare$