Summation of Powers over Product of Differences/Proof 3
![]() | This page has been identified as a candidate for refactoring of basic complexity. Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
![]() | This article needs to be tidied. Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
- $\ds \sum_{j \mathop = 1}^n \begin{pmatrix} {\dfrac { {x_j}^r} {\ds \prod_{\substack {1 \mathop \le k \mathop \le n \\ k \mathop \ne j} } \paren {x_j - x_k} } } \end{pmatrix} = \begin{cases} 0 & : 0 \le r < n - 1 \\ 1 & : r = n - 1 \\ \ds \sum_{j \mathop = 1}^n x_j & : r = n \end{cases}$
Proof
Definition
\(\ds \map p x\) | \(=\) | \(\ds \prod_{k \mathop = 1}^n \paren {x - x_k}\) | ||||||||||||
\(\ds \map {p_m} x\) | \(=\) | \(\ds \prod_{\substack {k \mathop = 1 \\ k \mathop \ne m} }^n \paren {x - x_k}\) | where $1 \le m \le n$ | |||||||||||
\(\ds A\) | \(=\) | \(\ds \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n - 2} & x_1^{n - 1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n - 2} & x_n^{n - 1} \\ \end{pmatrix}\) | where $\set {x_1, \ldots, x_n}$ is assumed to have distinct elements | |||||||||||
\(\ds A_{\vec Y}\) | \(=\) | \(\ds \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n - 2} & y_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n -2} & y_n \\ \end{pmatrix}\) | Vector $\vec Y$ has entries $y_1,\ldots,y_n$. |
Symbol $\map {\mathbf {Cof } } {M, i, j}$ denotes cofactor $M_{i j}$ of matrix $M$
Lemma 1
\(\ds \map \det A\) | \(=\) | \(\ds \map {p_m} {x_m} \map {\mathbf {Cof} } {A, m, n}\) |
Proof of Lemma 1
By Effect of Elementary Row Operations on Determinant, the determinant of $A$ is unchanged by adding a linear combination of the first $n - 1$ columns to the last column.
Let $\map f x$ be the monic polynomial $\map {p_m} x = x^{n - 1} + $ lower power terms.
Then:
\(\ds \det \begin {pmatrix} 1 & x_1 & \cdots & x_1^{n - 2} & x_1^{n - 1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n - 2} & x_n^{n - 1} \\ \end {pmatrix}\) | \(=\) | \(\ds \det \begin {pmatrix} 1 & x_1 & \cdots & x_1^{n - 2} & \map f {x_1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n - 2} & \map f {x_n} \\ \end {pmatrix}\) |
The last column on the right has all components zero except $m$th entry $\map {p_m} {x_m}$.
Apply cofactor expansion along column $n$.
$\Box$
Lemma 2
\(\text {(1)}: \quad\) | \(\ds \map \det A\) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}\) | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \map {\mathbf {Cof} } {A, m, n}\) | \(=\) | \(\ds \paren {-1}^{m + n} \prod_{\substack {1 \mathop \le i \mathop < j \mathop \le n \\ i \mathop \ne m \\ j \mathop \ne m} } \paren {x_j - x_i}\) |
Proof of Lemma 2:
Value of Vandermonde Determinant establishes $(1)$.
To prove (2), let:
- $\set {y_1, \ldots, y_{n - 1} } = \set {x_1, \ldots, x_n} \setminus \set {x_m}$
then apply $(1)$ with $\set {x_1, \ldots, x_n}$ replaced by $\set {y_1, \ldots, y_{n - 1} }$.
$\Box$
Theorem Details:
The Lemmas change the Theorem's equation to:
\(\text {(3)}: \quad\) | \(\ds \sum_{m \mathop = 1}^n {x_m^r} \frac {\map {\mathbf {Cof} } {A, m, n} } {\map \det A}\) | \(=\) | \(\ds \begin{cases} 0 & : 0 \mathop \le r \mathop < n - 1 \\ 1 & : r = n - 1 \\ \ds \sum_{j \mathop = 1}^n x_j & : r = n \\ \end{cases}\) |
Cofactor expansion changes identity $(3)$ to:
\(\text {(4)}: \quad\) | \(\ds \det \begin{pmatrix} 1 & x_1 & \cdots & x_1^{n - 2} & x_1^r \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & \cdots & x_n^{n - 2} & x_n^r \\ \end{pmatrix}\) | \(=\) | \(\ds \begin{cases} 0 & : 0 \mathop \le r \mathop < n - 1 \\ \map \det A & : r = n - 1 \\ \ds \map \det A \sum_{j \mathop = 1}^n x_j & : r = n \\ \end{cases}\) |
The proof is divided into three cases.
Case 1: $0 \mathop \le r \mathop \le n - 2$:
The determinant on the left in $(4)$ is zero by Square Matrix with Duplicate Rows has Zero Determinant.
Case 2: $r = n - 1$:
The determinant on the left in $(4)$ is $\map \det A$.
Case 3: $r = n$:
Expand $\ds \map p x = \prod_{k \mathop = 1}^n \paren {x - x_k}$ by Taylor's Theorem with remainder $R$ of degree $n - 2$:
- $\map p x = x^n - \paren {x_1 + \cdots + x_n} x^{n - 1} + \map R x$
Let $x = x_k$ for $1 \le k \le n$.
Then $x$ is a root of $\ds \map p x = \prod_{k \mathop = 1}^n \paren {x - x_k}$:
\(\ds 0\) | \(=\) | \(\ds \map p {x_k}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x_k^n - \paren {x_1 + \cdots + x_n} x_k^{n - 1} + \map R {x_k}\) |
Let:
\(\ds c\) | \(=\) | \(\ds x_1 + \cdots + x_n\) | ||||||||||||
\(\ds \vec u\) | \(=\) | \(\ds \begin {pmatrix} x_1^n \\ \vdots \\ x_n^n \end{pmatrix}\) | Column $n$ of the left side of $(4)$ | |||||||||||
\(\ds \vec z\) | \(=\) | \(\ds c \begin {pmatrix} x_1^{n - 1} \\ \vdots \\ x_n^{n - 1} \end{pmatrix}\) | Constant $c$ times column $n$ of $A$ | |||||||||||
\(\ds \vec w\) | \(=\) | \(\ds \begin{pmatrix} -\map R {x_1} \\ \vdots \\ -\map R {x_n} \end{pmatrix}\) |
Then:
\(\text {(5)}: \quad\) | \(\ds \vec u\) | \(=\) | \(\ds \vec z + \vec w\) | by equation $x_k^n = c x_k^{n - 1} - \map R {x_k}$ | ||||||||||
\(\text {(6)}: \quad\) | \(\ds \map \det {A_{\vec z} }\) | \(=\) | \(\ds c \map \det A\) | Effect of Elementary Row Operations on Determinant: factoring $c$ from last column of $A_{\vec z}$ |
\(\text {(7)}: \quad\) | \(\ds \map \det { A_{\vec w} }\) | \(=\) | \(\ds 0\) | Effect of Elementary Row Operations on Determinant: $\vec w$ is a linear combination of columns $1$ to $n - 1$ |
The left side of $(4)$:
\(\ds \map \det {A_{\vec u} }\) | \(=\) | \(\ds \map \det {A_{\vec z} } + \map \det {A_{\vec w} }\) | by $(5)$ and Determinant as Sum of Determinants | |||||||||||
\(\ds \) | \(=\) | \(\ds c \map \det A + 0\) | by $(6)$ and $(7)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \det A \sum_{i \mathop = 1}^n x_i\) | definition of $c$ |
$\blacksquare$
Also see
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.): $\S 1.2.3$: Sums and Products: Exercise $33$
- 2015: David C. Lay, Steven R. Lay and Judi J. McDonald: Linear Algebra and its Applications (5th ed.): Matrix Algebra Ch2 and Determinants Ch3