Value of Vandermonde Determinant/Formulation 1
Theorem
Let $V_n$ be the Vandermonde determinant of order $n$ defined as the following formulation:
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Its value is given by:
- $\ds V_n = \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}$
Proof 1
Let:
- $V_n = \begin{vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end{vmatrix}$
By Multiple of Row Added to Row of Determinant, we can subtract row 1 from each of the other rows and leave $V_n$ unchanged:
- $V_n = \begin{vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 0 & x_2 - x_1 & {x_2}^2 - {x_1}^2 & \cdots & {x_2}^{n - 2} - {x_1}^{n - 2} & {x_2}^{n - 1} - {x_1}^{n - 1} \\ 0 & x_3 - x_1 & {x_3}^2 - {x_1}^2 & \cdots & {x_3}^{n - 2} - {x_1}^{n - 2} & {x_3}^{n - 1} - {x_1}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & x_{n-1} - x_1 & {x_{n - 1} }^2 - {x_1}^2 & \cdots & {x_{n - 1} }^{n - 2} - {x_1}^{n - 2} & {x_{n - 1} }^{n - 1} - {x_1}^{n - 1} \\ 0 & x_n - x_1 & {x_n}^2 - {x_1}^2 & \cdots & {x_n}^{n - 2} - {x_1}^{n - 2} & {x_n}^{n - 1} - {x_1}^{n - 1} \end{vmatrix}$
Similarly without changing the value of $V_n$, we can subtract, in order:
and so on, till we subtract:
The first row will vanish all apart from the first element $a_{11} = 1$.
On all the other rows, we get, with new $i$ and $j$:
- $a_{i j} = \paren {x_i^{j - 1} - x_1^{j - 1} } - \paren {x_1 x_i^{j - 2} - x_1^{j - 1} } = \paren {x_i - x_1} x_i^{j - 2}$:
- $V_n = \begin {vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & x_2 - x_1 & \paren {x_2 - x_1} x_2 & \cdots & \paren {x_2 - x_1} {x_2}^{n - 3} & \paren {x_2 - x_1} {x_2}^{n - 2} \\ 0 & x_3 - x_1 & \paren {x_3 - x_1} x_3 & \cdots & \paren {x_3 - x_1} {x_3}^{n - 3} & \paren {x_3 - x_1} {x_3}^{n - 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & x_{n - 1} - x_1 & \paren {x_{n - 1} - x_1} x_{n - 1} & \cdots & \paren {x_{n - 1} - x_1} {x_{n - 1} }^{n - 3} & \paren {x_{n - 1} - x_1} {x_{n - 1} }^{n - 2} \\ 0 & x_n - x_1 & \paren {x_n - x_1} x_n & \cdots & \paren {x_n - x_1} {x_n}^{n - 3} & \paren {x_n - x_1} {x_n}^{n - 2} \end {vmatrix}$
For all rows apart from the first, the $k$th row has the constant factor $\paren {x_k - x_1}$.
So we can extract all these as factors, and from Determinant with Row Multiplied by Constant, we get:
- $\ds V_n = \prod_{k \mathop = 2}^n \paren {x_k - x_1} \begin {vmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & x_2 & \cdots & {x_2}^{n - 3} & {x_2}^{n - 2} \\ 0 & 1 & x_3 & \cdots & {x_3}^{n - 3} & {x_3}^{n - 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & x_{n - 1} & \cdots & {x_{n - 1} }^{n - 3} & {x_{n - 1} }^{n - 2} \\ 0 & 1 & x_n & \cdots & {x_n}^{n - 3} & {x_n}^{n - 2} \end {vmatrix}$
From Determinant with Unit Element in Otherwise Zero Row, we can see that this directly gives us:
- $\ds V_n = \prod_{k \mathop = 2}^n \paren {x_k - x_1} \begin {vmatrix} 1 & x_2 & \cdots & {x_2}^{n - 3} & {x_2}^{n - 2} \\ 1 & x_3 & \cdots & {x_3}^{n - 3} & {x_3}^{n - 2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n - 1} & \cdots & {x_{n - 1} }^{n - 3} & {x_{n - 1} }^{n - 2} \\ 1 & x_n & \cdots & {x_n}^{n - 3} & {x_n}^{n - 2} \end{vmatrix}$
and it can be seen that:
- $\ds V_n = \prod_{k \mathop = 2}^n \paren {x_k - x_1} V_{n - 1}$
$V_2$, by the time we get to it (it will concern elements $x_{n - 1}$ and $x_n$), can be calculated directly using the formula for calculating a Determinant of Order 2:
- $V_2 = \begin {vmatrix} 1 & x_{n - 1} \\ 1 & x_n \end {vmatrix} = x_n - x_{n - 1}$
The result follows.
$\blacksquare$
Proof 2
Proof by induction:
Let the Vandermonde determinant be presented in the following form:
- $V_n = \begin {vmatrix} {x_1}^{n - 1} & {x_1}^{n - 2} & \cdots & x_1 & 1 \\ {x_2}^{n - 1} & {x_2}^{n - 2} & \cdots & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {x_n}^{n - 1} & {x_n}^{n - 2} & \cdots & x_n & 1 \\ \end {vmatrix}$
For all $n \in \N_{>0}$, let $\map P n$ be the proposition:
- $\ds V_n = \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_i - x_j}$
$\map P 1$ is true, as this just says $\begin {vmatrix} 1 \end {vmatrix} = 1$.
Basis for the Induction
$\map P 2$ holds, as it is the case:
- $V_2 = \begin {vmatrix} a_1 & 1 \\ a_2 & 1 \end {vmatrix}$
which evaluates to $V_2 = a_1 - a_2$.
This is our basis for the induction.
Induction Hypothesis
Now we need to show that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true.
So this is our induction hypothesis:
- $\ds V_k = \prod_{1 \mathop \le i \mathop < j \mathop \le k} \paren {x_i - x_j}$
Then we need to show:
- $\ds V_{k + 1} = \prod_{1 \mathop \le i \mathop < j \mathop \le k + 1} \paren {x_i - x_j}$
Induction Step
This is our induction step:
Take the determinant:
- $V'_{k + 1} = \begin{vmatrix} x^k & x^{k - 1} & \cdots & x^2 & x & 1 \\ {x_2}^k & {x_2}^{k - 1} & \cdots & {x_2}^2 & x_2 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ {x_{k + 1} }^k & {x_{k + 1} }^{k - 1} & \cdots & {x_{k + 1} }^2 & x_{k + 1} & 1 \end{vmatrix}$
where it is seen that $x_1$ has been replaced in $V_{k + 1}$ with $x$.
Let the Expansion Theorem for Determinants be used to expand $V'_{k + 1}$ in terms of the first row.
It can be seen that it is a polynomial in $x$ whose degree is no greater than $k$.
Let that polynomial be denoted $\map f x$.
Let any $x_r$ be substituted for $x$ in the determinant.
Then two of its rows will be the same.
From Square Matrix with Duplicate Rows has Zero Determinant, the value of such a determinant will be $0$.
Such a substitution in the determinant is equivalent to substituting $x_r$ for $x$ in $\map f x$.
Thus it follows that:
- $\map f {x_2} = \map f {x_3} = \cdots = \map f {x_{k + 1} } = 0$
So $\map f x$ is divisible by each of the factors $x - x_2, x - x_3, \ldots, x - x_{k + 1}$.
All these factors are distinct, otherwise the original determinant is zero.
So:
- $\map f c = \map C {x - x_2} \paren {x - x_3} \cdots \paren {x - x_k} \paren {x - x_{k + 1} }$
As the degree of $\map f x$ is no greater than $k$, it follows that $C$ is independent of $x$.
From the Expansion Theorem for Determinants, the coefficient of $x^k$ is:
- $\begin{vmatrix} {x_2}^{k - 1} & \cdots & {x_2}^2 & x_2 & 1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ {x_{k + 1} }^{k - 1} & \cdots & {x_{k + 1} }^2 & x_{k + 1} & 1 \end{vmatrix}$
By the induction hypothesis, this is equal to:
- $\ds \prod_{2 \mathop \le i \mathop < j \mathop \le k + 1} \paren {x_i - x_j}$
This must be our value of $C$.
So we have:
- $\ds \map f x = \paren {x - x_2} \paren {x - x_3} \dotsm \paren {x - x_k} \paren {x - x_{k + 1} } \prod_{2 \mathop \le i \mathop < j \mathop \le k + 1} \paren {x_i - x_j}$
Substituting $x_1$ for $x$, we retrieve the proposition $\map P {k + 1}$.
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\ds V_n = \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_i - x_j}$
$\blacksquare$
Proof 3
Let:
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Start by replacing number $x_n$ in $V_n$ with the unknown $x$.
Thus $V_n$ is made into a function of $x$:
- $\map P x = \begin{vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \\ 1 & x & x^2 & \cdots & x^{n - 2} & x^{n - 1} \end{vmatrix}$
Let $x$ equal a value from the set $\set {x_1, \ldots, x_{n-1} }$.
Then determinant $\map P x$ has equal rows, giving:
\(\ds \map P x\) | \(=\) | \(\ds 0\) | for $x = x_1, \ldots, x_{n - 1}$ |
Perform row expansion by the last row.
Then $\map P x$ is seen to be a polynomial of degree $n-1$:
- $\map P x = \begin {vmatrix} x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \end{vmatrix} + \begin{vmatrix} 1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ 1 & {x_3}^2 & \cdots & {x_3}^{n - 2} & {x_3}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} & {x_{n - 1} }^{n - 1} \end {vmatrix} x + \cdots + \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} \\ 1 & x_3 & {x_3}^2 & \cdots & {x_3}^{n - 2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n - 1} & {x_{n - 1} }^2 & \cdots & {x_{n - 1} }^{n - 2} \end{vmatrix} x^{n - 1}$
By the Polynomial Factor Theorem:
- $\map P x = \map C {x - x_1} \paren {x - x_2} \dotsm \paren {x - x_{n - 1} }$
where $C$ is the leading coefficient (with $x^{n - 1}$ power).
Thus:
- $\map P x = V_{n - 1} \paren {x - x_1} \paren {x - x_2} \dotsm \paren {x - x_{n - 1} }$
which by evaluating at $x = x_n$ gives:
- $V_n = V_{n - 1} \paren {x_n - x_1} \paren {x_n - x_2} \dotsm \paren {x_n - x_{n - 1} }$
Repeating the process:
\(\ds V_n\) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < n} \paren {x_n - x_i} V_{n - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < n} \paren {x_n - x_i} \prod_{1 \mathop \le i \mathop < n - 1} \paren {x_{n - 1} - x_i} V_{n - 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dotsm\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}\) |
which establishes the solution.
$\blacksquare$
Proof 4
Let:
- $V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$
Let $\map f x$ be an arbitrary monic polynomial of degree $n - 1$:
- $\ds \map f x = x^{n - 1} + \sum_{i \mathop = 0}^{n - 2} a_i x^i$
Apply elementary column operations to $V_n$ repeatedly to show:
- $V_n = W$
where:
- $W = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & \map f {x_1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & \map f {x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & \map f {x_n} \end {vmatrix}$
Select a specific degree $n - 1$ monic polynomial:
- $\ds \map f x = \prod_{k \mathop = 1}^{n - 1} \paren {x - x_k}$
The selected polynomial is zero at all values $x_1, \ldots, x_{n - 1}$.
Then the last column of $W$ is all zeros except the entry $\map f {x_n}$.
Expand $\map \det W$ by cofactors along the last column to prove:
\(\text {(1)}: \quad\) | \(\ds V_n\) | \(=\) | \(\ds \map f {x_n} V_{n - 1}\) | Expansion Theorem for Determinants for columns | ||||||||||
\(\ds \) | \(=\) | \(\ds V_{n - 1} \prod_{k \mathop = 1}^{n - 1} \paren {x_n - x_k}\) |
For $n \ge 2$, let $\map P n$ be the statement:
- $\ds V_n = \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}$
Mathematical induction will be applied.
Basis for the Induction
By definition, determinant $V_1 = 1$.
To prove $\map P 2$ is true, use equation $(1)$ with $n = 2$:
- $V_2 = \paren {x_2 - x_1} V_1$
This is the basis for the induction.
Induction Step
This is the induction step:
Let $\map P n$ is be assumed true.
We are to prove that $\map P {n + 1}$ is true.
As follows:
\(\ds V_{n + 1}\) | \(=\) | \(\ds V_n \prod_{k \mathop = 1}^n \paren {x_{n + 1} - x_k}\) | from $(1)$, setting $n \to n + 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{1 \mathop \le m \mathop < k \mathop \le n} \paren {x_k - x_m} \prod_{k \mathop = 1}^n \paren {x_{n + 1} - x_k}\) | Induction hypothesis with new indexing symbols: $i \to m, j \to k$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \prod_{1 \mathop \le i \mathop < j \mathop \le n + 1} \paren {x_j - x_i}\) | simplifying |
Thus $\map P {n + 1}$ has been shown to be true.
The induction is complete.
$\blacksquare$
Source of Name
This entry was named for Alexandre-Théophile Vandermonde.
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Vandermonde determinant
- 1992: Roderick Gow: Cauchy's matrix, the Vandermonde matrix and polynomial interpolation (Bull. Irish Math. Soc. Vol. 28: pp. 45 – 52)
- 1994: H.E. Rose: A Course in Number Theory (2nd ed.) ... (previous) ... (next): Preface to first edition: Prerequisites: $\text {(i)}$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Vandermonde matrix