Symbols:Greek/Delta/Kronecker Delta
< Symbols:Greek | Delta
Jump to navigation
Jump to search
Kronecker Delta
- $\delta_{x y}$
Let $\Gamma$ be a set.
Let $R$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.
Then $\delta_{\alpha \beta}: \Gamma \times \Gamma \to R$ is the mapping on the cartesian square of $\Gamma$ defined as:
- $\forall \tuple {\alpha, \beta} \in \Gamma \times \Gamma: \delta_{\alpha \beta} := \begin{cases} 1_R & : \alpha = \beta \\ 0_R & : \alpha \ne \beta \end{cases}$
The $\LaTeX$ code for \(\delta_{x y}\) is \delta_{x y}
.