Symbols:Greek/Delta/Kronecker Delta

From ProofWiki
Jump to navigation Jump to search

Kronecker Delta

$\delta_{x y}$


Let $\Gamma$ be a set.

Let $R$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.


Then $\delta_{\alpha \beta}: \Gamma \times \Gamma \to R$ is the mapping on the cartesian square of $\Gamma$ defined as:

$\forall \tuple {\alpha, \beta} \in \Gamma \times \Gamma: \delta_{\alpha \beta} := \begin{cases} 1_R & :\alpha = \beta \\ 0_R & :\alpha \ne \beta \end{cases}$

This use of $\delta$ is known as the Kronecker delta notation or Kronecker delta convention.


It can be expressed in Iverson bracket notation as:

$\delta_{\alpha \beta} := \sqbrk {\alpha = \beta}$


The $\LaTeX$ code for \(\delta_{x y}\) is \delta_{x y} .