From ProofWiki
Jump to: navigation, search

Previous  ... Next


The $11$th letter of the Greek alphabet.

Minuscule: $\lambda$
Majuscule: $\Lambda$

The $\LaTeX$ code for \(\lambda\) is \lambda .

The $\LaTeX$ code for \(\Lambda\) is \Lambda .

Von Mangoldt Function

$\Lambda \left({n}\right)$

The von Mangoldt function $\Lambda: \N \to \R$ is defined as:

$\Lambda \left({n}\right) = \begin{cases} \ln \left({p}\right) & : \exists m \in \N, p \in \mathbb P: n = p^m \\ 0 & : \text{otherwise} \end{cases}$

where $\mathbb P$ is the set of all prime numbers.

The $\LaTeX$ code for \(\Lambda \left({n}\right)\) is \Lambda \left({n}\right) .

Linear Density


Used to denote the linear density of a given one-dimensional body:

$\displaystyle \lambda = \frac m l$


Parameter of Poisson Distribution


Used to denote the parameter of a given Poisson distribution:

Let $X$ be a discrete random variable on a probability space $\left({\Omega, \Sigma, \Pr}\right)$.

Then $X$ has the poisson distribution with parameter $\lambda$ (where $\lambda > 0$) if:

  • $\operatorname{Im} \left({X}\right) = \left\{{0, 1, 2, \ldots}\right\} = \N$
  • $\displaystyle \Pr \left({X = k}\right) = \frac 1 {k!} \lambda^k e^{-\lambda}$

Left Regular Representation


Let $\left ({S, \circ}\right)$ be an algebraic structure.

The mapping $\lambda_a: S \to S$ is defined as:

$\forall a \in S: \lambda_a \left({x}\right) = a \circ x$

This is known as the left regular representation of $\left ({S, \circ}\right)$ with respect to $a$.

The $\LaTeX$ code for \(\lambda_a\) is \lambda_a .