Symbols:Greek/Sigma/Summation
< Symbols:Greek | Sigma
Jump to navigation
Jump to search
Summation
Let $\struct {S, +}$ be an algebraic structure where the operation $+$ is an operation derived from, or arising from, the addition operation on the natural numbers.
Let $\tuple {a_1, a_2, \ldots, a_n} \in S^n$ be an ordered $n$-tuple in $S$.
The composite is called the summation of $\tuple {a_1, a_2, \ldots, a_n}$, and is written:
- $\ds \sum_{j \mathop = 1}^n a_j = \tuple {a_1 + a_2 + \cdots + a_n}$
The $\LaTeX$ code for \(\ds \sum_{j \mathop = 1}^n a_j\) is \ds \sum_{j \mathop = 1}^n a_j
.
The $\LaTeX$ code for \(\ds \sum_{1 \mathop \le j \mathop \le n} a_j\) is \ds \sum_{1 \mathop \le j \mathop \le n} a_j
.
The $\LaTeX$ code for \(\ds \sum_{\map \Phi j} a_j\) is \ds \sum_{\map \Phi j} a_j
.
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): sigma: 1.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $7$: Common signs and symbols: summation sign
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): sigma
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $14$: Symbols