Symbols:LaTeX Commands/I

From ProofWiki
Jump to navigation Jump to search


Previous  ... Next

Taken from:

Also see:

\(\ideal {a}\) $\quad:\quad$\ideal {a} $\qquad$Ideal of Ring $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\idotsint\) $\quad:\quad$\idotsint $\quad$AMSmath
\(\iff\) $\quad:\quad$\iff
\(\II\) $\quad:\quad$\II $\qquad$that is: \mathcal I $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\iiiint\) $\quad:\quad$\iiiint $\quad$AMSmath
\(\iiint\) $\quad:\quad$\iiint
\(\iint\) $\quad:\quad$\iint
\(\map \Im z\) $\quad:\quad$\map \Im z $\qquad$Imaginary Part $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\imath\) $\quad:\quad$\imath $\qquad$for use in constructs, for example: $\hat \imath$
\(\Img {f}\) $\quad:\quad$\Img {f} $\qquad$Image of Mapping $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\impliedby\) $\quad:\quad$\impliedby $\quad$AMSsymbols
\(\implies\) $\quad:\quad$\implies $\quad$AMSsymbols
\(\in\) $\quad:\quad$\in
\(\index G H\) $\quad:\quad$\index G H $\qquad$Index of Subgroup $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\inf\) $\quad:\quad$\inf
\(\infty\) $\quad:\quad$\infty
\(\inj\) $\quad:\quad$\inj $\qquad$Canonical Injection $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\injlim\) $\quad:\quad$\injlim $\quad$AMSmath
\(\Inn {S}\) $\quad:\quad$\Inn {S} $\qquad$Group of Inner Automorphisms $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\innerprod {x} {y}\) $\quad:\quad$\innerprod {x} {y} $\qquad$Inner Product $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\int\) $\quad:\quad$\int
\(\Int {\gamma}\) $\quad:\quad$\Int {\gamma} $\qquad$Interior
\(\intercal\) $\quad:\quad$\intercal $\quad$AMSsymbols
\(\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}\) $\quad:\quad$\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a} $\qquad$Limits of Integration $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\intop\) $\quad:\quad$\intop
\(\invlaptrans {F}\) $\quad:\quad$\invlaptrans {F} $\qquad$Inverse Laplace Transform $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\iota\) $\quad:\quad$\iota
\(a \it a\) $\quad:\quad$a \it a