Symbols:LaTeX Commands
Jump to navigation
Jump to search
$\LaTeX$ commands
Taken from:
Also see:
Symbols
\(a'\) | $\quad:\quad$a' , a^\prime
|
||
\(a"\) | $\quad:\quad$a"
|
||
\(a\,``\) | $\quad:\quad$a\,``
|
||
\(a^b\) | $\quad:\quad$a^b
|
||
\(a_b\) | $\quad:\quad$a_b
|
||
\(\#\) | $\quad:\quad$\#
|
||
\(\%\) | $\quad:\quad$\%
|
||
\(\&\) | $\quad:\quad$\& , \And
|
||
\(a \ b\) | $\quad:\quad$a \ b , a \space b
|
$\qquad$Standard space | |
\(a ~ b\) | $\quad:\quad$a ~ b , a \nobreakspace b
|
$\qquad$Standard space, no line break | |
\(a \! b\) | $\quad:\quad$a \! b , a \negthinspace b
|
$\qquad$Negative thin space | |
\(a \, b\) | $\quad:\quad$a \, b , a \thinspace b
|
$\qquad$Thin space: $\frac 1 6$ or $\frac 3 {18}$ of a quad | |
\(a \: b\) | $\quad:\quad$a \: b
|
$\qquad$Medium space: $\frac 2 9$ or $\frac 4 {18}$ of a quad | |
\(a \> b\) | $\quad:\quad$a \> b
|
$\qquad$Medium space: $\frac 2 9$ or $\frac 4 {18}$ of a quad | |
\(a \; b\) | $\quad:\quad$a \; b
|
$\qquad$Thick space: $\frac 5 {18}$ of a quad | |
\(\_\) | $\quad:\quad$\_
|
||
\(\{\) | $\quad:\quad$\{ , \lbrace
|
||
\(\}\) | $\quad:\quad$\} , \rbrace
|
- $\$ \quad:\quad$
\$
- $| \quad:\quad$
|
,\vert
,\lvert
,\rvert
- $\| \quad:\quad$
\|
,\Vert
,\lVert
,\rVert
A
\({a+1} \above 2pt {b+2} \) | $\quad:\quad${a+1} \above 2pt {b+2}
|
||
\({a+1} \abovewithdelims [ ] 3pt {b+2} \) | $\quad:\quad${a+1} \abovewithdelims [ ] 3pt {b+2}
|
||
\(\acute e\) | $\quad:\quad$\acute e
|
||
\(\AA\) | $\quad:\quad$\AA
|
$\qquad$that is: \mathcal A
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Add\) | $\quad:\quad$\Add
|
$\qquad$Addition as a Primitive Recursive Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\adj {\mathbf A}\) | $\quad:\quad$\adj {\mathbf A}
|
$\qquad$Adjugate Matrix | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\map \Ai {x}\) | $\quad:\quad$\map \Ai {x}
|
$\qquad$Airy Function of the First Kind | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\aleph\) | $\quad:\quad$\aleph
|
||
\(\alpha\) | $\quad:\quad$\alpha
|
||
\(\am z\) | $\quad:\quad$\am z
|
$\qquad$Amplitude | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\amalg\) | $\quad:\quad$\amalg
|
||
\(\And\) | $\quad:\quad$\And , \&
|
||
\(\angle\) | $\quad:\quad$\angle
|
||
\(\approx\) | $\quad:\quad$\approx
|
||
\(\approxeq\) | $\quad:\quad$\approxeq
|
||
\(\arccos\) | $\quad:\quad$\arccos
|
$\qquad$Arccosine | |
\(\arccot\) | $\quad:\quad$\arccot
|
$\qquad$Arccotangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arccsc\) | $\quad:\quad$\arccsc
|
$\qquad$Arccosecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arcosh\) | $\quad:\quad$\arcosh
|
$\qquad$Area Hyperbolic Cosine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Arcosh\) | $\quad:\quad$\Arcosh
|
$\qquad$Complex Area Hyperbolic Cosine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arcoth\) | $\quad:\quad$\arcoth
|
$\qquad$Area Hyperbolic Cotangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Arcoth\) | $\quad:\quad$\Arcoth
|
$\qquad$Complex Area Hyperbolic Cotangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arcsch\) | $\quad:\quad$\arcsch
|
$\qquad$Area Hyperbolic Cosecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Arcsch\) | $\quad:\quad$\Arcsch
|
$\qquad$Complex Area Hyperbolic Cosecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arcsec\) | $\quad:\quad$\arcsec
|
$\qquad$Arcsecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arcsin\) | $\quad:\quad$\arcsin
|
$\qquad$Arcsine | |
\(\arctan\) | $\quad:\quad$\arctan
|
$\qquad$Arctangent | |
\(\arsech\) | $\quad:\quad$\arsech
|
$\qquad$Area Hyperbolic Secant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Arsech\) | $\quad:\quad$\Arsech
|
$\qquad$Complex Area Hyperbolic Secant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arsinh\) | $\quad:\quad$\arsinh
|
$\qquad$Area Hyperbolic Sine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Arsinh\) | $\quad:\quad$\Arsinh
|
$\qquad$Complex Area Hyperbolic Sine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\artanh\) | $\quad:\quad$\artanh
|
$\qquad$Area Hyperbolic Tangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Artanh\) | $\quad:\quad$\Artanh
|
$\qquad$Complex Area Hyperbolic Tangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Area\) | $\quad:\quad$\Area
|
$\qquad$Area of Plane Figure | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\arg\) | $\quad:\quad$\arg
|
$\qquad$Argument of Complex Number | |
\(\Arg z\) | $\quad:\quad$\Arg z
|
$\qquad$Principal Argument of Complex Number | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\array{a & b \cr d & e} \) | $\quad:\quad$\array{a & b \cr d & e}
|
||
\(\ast\) | $\quad:\quad$\ast , *
|
||
\(\asymp\) | $\quad:\quad$\asymp
|
||
\(a \atop b\) | $\quad:\quad$a \atop b
|
||
\({a \atopwithdelims [ ] b} \) | $\quad:\quad${a \atopwithdelims [ ] b}
|
||
\(\Aut {S}\) | $\quad:\quad$\Aut {S}
|
$\qquad$Automorphism Group | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
B
\(\backepsilon\) | $\quad:\quad$\backepsilon
|
$\quad$AMSsymbols | |
\(\backprime\) | $\quad:\quad$\backprime
|
$\quad$AMSsymbols | |
\(\backsim\) | $\quad:\quad$\backsim
|
$\quad$AMSsymbols | |
\(\backsimeq\) | $\quad:\quad$\backsimeq
|
$\quad$AMSsymbols | |
\(\backslash\) | $\quad:\quad$\backslash
|
||
\(\bar x\) | $\quad:\quad$\bar x
|
$\qquad$non-stretchy | |
\(\barwedge\) | $\quad:\quad$\barwedge
|
$\quad$AMSsymbols | |
\(\BB\) | $\quad:\quad$\BB
|
$\qquad$that is: \mathcal B
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Bbb A\) | $\quad:\quad$\Bbb A
|
||
\(\Bbbk\) | $\quad:\quad$\Bbbk
|
$\quad$AMSsymbols | |
\(\bbox x\) | $\quad:\quad$\bbox x
|
||
\(\because\) | $\quad:\quad$\because
|
$\quad$AMSsymbols | |
\(\Bei\) | $\quad:\quad$\Bei
|
$\qquad$Bei Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Ber\) | $\quad:\quad$\Ber
|
$\qquad$Ber Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Bernoulli {p}\) | $\quad:\quad$\Bernoulli {p}
|
$\qquad$Bernoulli Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\beta\) | $\quad:\quad$\beta
|
||
\(\Beta\) | $\quad:\quad$\Beta
|
||
\(\BetaDist {\alpha} {\beta}\) | $\quad:\quad$\BetaDist {\alpha} {\beta}
|
$\qquad$Beta Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\beth\) | $\quad:\quad$\beth
|
$\quad$AMSsymbols | |
\(\between\) | $\quad:\quad$\between
|
$\quad$AMSsymbols | |
\(\bf x\) | $\quad:\quad$\bf x
|
||
\(\Big (\) | $\quad:\quad$\Big (
|
||
\(\big (\) | $\quad:\quad$\big (
|
||
\(\bigcap\) | $\quad:\quad$\bigcap
|
||
\(\bigcirc\) | $\quad:\quad$\bigcirc
|
||
\(\bigcup\) | $\quad:\quad$\bigcup
|
||
\(\Bigg (\) | $\quad:\quad$\Bigg (
|
||
\(\bigg (\) | $\quad:\quad$\bigg (
|
||
\(\Biggl (\) | $\quad:\quad$\Biggl (
|
||
\(\biggl (\) | $\quad:\quad$\biggl (
|
||
\(\Biggm \vert\) | $\quad:\quad$\Biggm \vert
|
||
\(\biggm \vert\) | $\quad:\quad$\biggm \vert
|
||
\(\Biggr )\) | $\quad:\quad$\Biggr )
|
||
\(\biggr )\) | $\quad:\quad$\biggr )
|
||
\(\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}\) | $\quad:\quad$\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}
|
$\qquad$Limits of Integration | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Bigl (\) | $\quad:\quad$\Bigl (
|
||
\(\bigl (\) | $\quad:\quad$\bigl (
|
||
\(\Bigm \vert\) | $\quad:\quad$\Bigm \vert
|
||
\(\bigm \vert\) | $\quad:\quad$\bigm \vert
|
||
\(\bigodot\) | $\quad:\quad$\bigodot
|
||
\(\bigoplus\) | $\quad:\quad$\bigoplus
|
||
\(\bigotimes\) | $\quad:\quad$\bigotimes
|
||
\(\Bigr )\) | $\quad:\quad$\Bigr )
|
||
\(\bigr )\) | $\quad:\quad$\bigr )
|
||
\(\bigsize {x}\) | $\quad:\quad$\bigsize {x}
|
$\qquad$Absolute Value | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bigsqcup\) | $\quad:\quad$\bigsqcup
|
||
\(\bigstar\) | $\quad:\quad$\bigstar
|
$\quad$AMSsymbols | |
\(\bigtriangledown\) | $\quad:\quad$\bigtriangledown
|
||
\(\bigtriangleup\) | $\quad:\quad$\bigtriangleup
|
||
\(\biguplus\) | $\quad:\quad$\biguplus
|
||
\(\bigvalueat {\delta x} {x \mathop = x_j}\) | $\quad:\quad$\bigvalueat {\delta x} {x \mathop = x_j}
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bigvee\) | $\quad:\quad$\bigvee
|
||
\(\bigwedge\) | $\quad:\quad$\bigwedge
|
||
\(\binom a b\) | $\quad:\quad$\binom a b
|
$\quad$AMSmath | |
\(\Binomial {n} {p}\) | $\quad:\quad$\Binomial {n} {p}
|
$\qquad$Binomial Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\blacklozenge\) | $\quad:\quad$\blacklozenge
|
$\quad$AMSsymbols | |
\(\blacksquare\) | $\quad:\quad$\blacksquare
|
$\quad$AMSsymbols | |
\(\blacktriangle\) | $\quad:\quad$\blacktriangle
|
$\quad$AMSsymbols | |
\(\blacktriangledown\) | $\quad:\quad$\blacktriangledown
|
$\quad$AMSsymbols | |
\(\blacktriangleleft\) | $\quad:\quad$\blacktriangleleft
|
$\quad$AMSsymbols | |
\(\blacktriangleright\) | $\quad:\quad$\blacktriangleright
|
$\quad$AMSsymbols | |
\(\bmod\) | $\quad:\quad$\bmod
|
||
\(\boldsymbol \circ\) | $\quad:\quad$\boldsymbol \circ
|
||
\(\bot\) | $\quad:\quad$\bot
|
||
\(\bowtie\) | $\quad:\quad$\bowtie
|
||
\(\Box\) | $\quad:\quad$\Box
|
$\quad$AMSsymbols | |
\(\boxdot\) | $\quad:\quad$\boxdot
|
$\quad$AMSsymbols | |
\(\boxed a\) | $\quad:\quad$\boxed a
|
$\quad$AMSmath | |
\(\boxminus\) | $\quad:\quad$\boxminus
|
$\quad$AMSsymbols | |
\(\boxplus\) | $\quad:\quad$\boxplus
|
$\quad$AMSsymbols | |
\(\boxtimes\) | $\quad:\quad$\boxtimes
|
$\quad$AMSsymbols | |
\(\ds {a \brace b}\) | $\quad:\quad$\ds {a \brace b}
|
$\qquad$Stirling Number of the Second Kind | |
\(\ds {a \brack b}\) | $\quad:\quad$\ds {a \brack b}
|
$\qquad$Stirling Number of the First Kind | |
\(\braket {a} {b}\) | $\quad:\quad$\braket {a} {b}
|
$\qquad$Dirac Notation | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\breve x\) | $\quad:\quad$\breve x
|
||
\(\bsalpha\) | $\quad:\quad$\bsalpha
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsbeta\) | $\quad:\quad$\bsbeta
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bschi\) | $\quad:\quad$\bschi
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsDelta\) | $\quad:\quad$\bsDelta
|
$\qquad$a vector '$\Delta$' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bsepsilon\) | $\quad:\quad$\bsepsilon
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsdelta\) | $\quad:\quad$\bsdelta
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bseta\) | $\quad:\quad$\bseta
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsgamma\) | $\quad:\quad$\bsgamma
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsiota\) | $\quad:\quad$\bsiota
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bskappa\) | $\quad:\quad$\bskappa
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bslambda\) | $\quad:\quad$\bslambda
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsmu\) | $\quad:\quad$\bsmu
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsnu\) | $\quad:\quad$\bsnu
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsomega\) | $\quad:\quad$\bsomega
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsomicron\) | $\quad:\quad$\bsomicron
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsone\) | $\quad:\quad$\bsone
|
$\qquad$vector of ones | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bsphi\) | $\quad:\quad$\bsphi
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bspi\) | $\quad:\quad$\bspi
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bspsi\) | $\quad:\quad$\bspsi
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsrho\) | $\quad:\quad$\bsrho
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bssigma\) | $\quad:\quad$\bssigma
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bst\) | $\quad:\quad$\bst
|
$\qquad$a vector 't' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bstau\) | $\quad:\quad$\bstau
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bstheta\) | $\quad:\quad$\bstheta
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsupsilon\) | $\quad:\quad$\bsupsilon
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsv\) | $\quad:\quad$\bsv
|
$\qquad$a vector 'v' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bsw\) | $\quad:\quad$\bsw
|
$\qquad$a vector 'w' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bsx\) | $\quad:\quad$\bsx
|
$\qquad$a vector 'x' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bsxi\) | $\quad:\quad$\bsxi
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\bsy\) | $\quad:\quad$\bsy
|
$\qquad$a vector 'y' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bsz\) | $\quad:\quad$\bsz
|
$\qquad$a vector 'z' | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bszero\) | $\quad:\quad$\bszero
|
$\qquad$vector of zeros | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\bszeta\) | $\quad:\quad$\bszeta
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\buildrel a b \over \to\) | $\quad:\quad$\buildrel a b \over \to
|
||
\(\bullet\) | $\quad:\quad$\bullet
|
||
\(\Bumpeq\) | $\quad:\quad$\Bumpeq
|
$\quad$AMSsymbols | |
\(\bumpeq\) | $\quad:\quad$\bumpeq
|
C
\(\C\) | $\quad:\quad$\C
|
$\qquad$Set of Complex Numbers | |
\(\cal A\) | $\quad:\quad$\cal A
|
||
\(\cap\) | $\quad:\quad$\cap
|
||
\(\Cap\) | $\quad:\quad$\Cap
|
$\quad$AMSsymbols | |
\(\map \Card {S}\) | $\quad:\quad$\map \Card {S}
|
$\qquad$Cardinality | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\card {S}\) | $\quad:\quad$\card {S}
|
$\qquad$Cardinality | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cases {x & : $x \ge 0$ \cr -x & : $x < 0$} \) | $\quad:\quad$\cases {x & : $x \ge 0$ \cr -x & : $x < 0$}
|
||
\(\Cauchy {x_0} {\gamma}\) | $\quad:\quad$\Cauchy {x_0} {\gamma}
|
$\qquad$Cauchy Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\CC\) | $\quad:\quad$\CC
|
$\qquad$that is: \mathcal C
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Cdm {f}\) | $\quad:\quad$\Cdm {f}
|
$\qquad$Codomain of Mapping | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \cdot b\) | $\quad:\quad$a \cdot b
|
||
\(a \cdotp b\) | $\quad:\quad$a \cdotp b
|
||
\(a \cdots b\) | $\quad:\quad$a \cdots b
|
||
\(\ceiling {11.98}\) | $\quad:\quad$\ceiling {11.98}
|
$\qquad$Ceiling Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(30 \cels\) | $\quad:\quad$30 \cels
|
$\qquad$Degrees Celsius | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(15 \cents\) | $\quad:\quad$15 \cents
|
$\qquad$Cent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \centerdot b\) | $\quad:\quad$a \centerdot b
|
$\quad$AMSsymbols | |
\(\cfrac 2 {1 + \cfrac 2 {1 + \cfrac 2 1} }\) | $\quad:\quad$\cfrac 2 {1 + \cfrac 2 {1 + \cfrac 2 1} }
|
$\quad$AMSmath | |
\(\Char {R}\) | $\quad:\quad$\Char {R}
|
$\qquad$Characteristic of Ring, etc. | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\check a\) | $\quad:\quad$\check a
|
||
\(\checkmark\) | $\quad:\quad$\checkmark
|
$\quad$AMSsymbols | |
\(\chi\) | $\quad:\quad$\chi
|
||
\(a \choose b\) | $\quad:\quad$a \choose b
|
||
\(\Ci\) | $\quad:\quad$\Ci
|
$\qquad$Cosine Integral Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\circ\) | $\quad:\quad$\circ
|
||
\(\circeq\) | $\quad:\quad$\circeq
|
$\quad$AMSsymbols | |
\(\circlearrowleft\) | $\quad:\quad$\circlearrowleft
|
$\quad$AMSsymbols | |
\(\circlearrowright\) | $\quad:\quad$\circlearrowright
|
$\quad$AMSsymbols | |
\(\circledast\) | $\quad:\quad$\circledast
|
$\quad$AMSsymbols | |
\(\circledcirc\) | $\quad:\quad$\circledcirc
|
$\quad$AMSsymbols | |
\(\circleddash\) | $\quad:\quad$\circleddash
|
$\quad$AMSsymbols | |
\(\circledR\) | $\quad:\quad$\circledR
|
$\quad$AMSsymbols | |
\(\circledS\) | $\quad:\quad$\circledS
|
$\quad$AMSsymbols | |
\(\cis \theta\) | $\quad:\quad$\cis \theta
|
$\qquad$$\cos \theta + i \sin \theta$ | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\map \cl S\) | $\quad:\quad$\map \cl S
|
$\qquad$Closure (Topology) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\closedint {a_1} {a_2}\) | $\quad:\quad$\closedint {a_1} {a_2}
|
$\qquad$Closed Interval | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\closedrect {\mathbf a_1} {\mathbf a_2}\) | $\quad:\quad$\closedrect {\mathbf a_1} {\mathbf a_2}
|
$\qquad$Closed Rectangle | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\clubsuit\) | $\quad:\quad$\clubsuit
|
||
\(\cmod {z_1 z_2}\) | $\quad:\quad$\cmod {z_1 z_2}
|
$\qquad$Complex Modulus | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cn u\) | $\quad:\quad$\cn u
|
$\qquad$Elliptic Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \colon b\) | $\quad:\quad$a \colon b
|
$\qquad$Compare a : b for $a : b$
|
|
\(\color {red} a\) | $\quad:\quad$\color {red} a
|
$\quad$color | |
\(\complement\) | $\quad:\quad$\complement
|
$\quad$AMSsymbols | |
\(\condprob {A} {B}\) | $\quad:\quad$\condprob {A} {B}
|
$\qquad$Conditional Probability | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cong\) | $\quad:\quad$\cong
|
||
\(\conjclass {x}\) | $\quad:\quad$\conjclass {x}
|
$\qquad$Conjugacy Class | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cont {f}\) | $\quad:\quad$\cont {f}
|
$\qquad$Content of Polynomial | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ContinuousUniform {a} {v}\) | $\quad:\quad$\ContinuousUniform {a} {v}
|
$\qquad$Continuous Uniform Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\coprod\) | $\quad:\quad$\coprod
|
||
\(\cos\) | $\quad:\quad$\cos
|
$\qquad$Cosine | |
\(\cosec\) | $\quad:\quad$\cosec
|
$\qquad$Cosecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cosh\) | $\quad:\quad$\cosh
|
$\qquad$Hyperbolic Cosine | |
\(\Cosh\) | $\quad:\quad$\Cosh
|
$\qquad$Hyperbolic Cosine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cot\) | $\quad:\quad$\cot
|
$\qquad$Cotangent | |
\(\coth\) | $\quad:\quad$\coth
|
$\qquad$Hyperbolic Cotangent | |
\(\Coth\) | $\quad:\quad$\Coth
|
$\qquad$Hyperbolic Cotangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cov {X, Y}\) | $\quad:\quad$\cov {X, Y}
|
$\qquad$Covariance | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\csc\) | $\quad:\quad$\csc
|
$\qquad$Cosecant | |
\(\csch\) | $\quad:\quad$\csch
|
$\qquad$Hyperbolic Cosecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Csch\) | $\quad:\quad$\Csch
|
$\qquad$Hyperbolic Cosecant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\cup\) | $\quad:\quad$\cup
|
||
\(\Cup\) | $\quad:\quad$\Cup
|
$\quad$AMSsymbols | |
\(\curl\) | $\quad:\quad$\curl
|
$\qquad$Curl Operator | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\curlyeqprec\) | $\quad:\quad$\curlyeqprec
|
$\quad$AMSsymbols | |
\(\curlyeqsucc\) | $\quad:\quad$\curlyeqsucc
|
$\quad$AMSsymbols | |
\(\curlyvee\) | $\quad:\quad$\curlyvee
|
$\quad$AMSsymbols | |
\(\curlywedge\) | $\quad:\quad$\curlywedge
|
$\quad$AMSsymbols | |
\(\curvearrowleft\) | $\quad:\quad$\curvearrowleft
|
$\quad$AMSsymbols | |
\(\curvearrowright\) | $\quad:\quad$\curvearrowright
|
$\quad$AMSsymbols |
D
\(\dfrac \d {\d x}\) | $\quad:\quad$\dfrac \d {\d x}
|
$\qquad$Roman $\d$ for Derivatives | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\dagger\) | $\quad:\quad$\dagger
|
||
\(\daleth\) | $\quad:\quad$\daleth
|
$\quad$AMSsymbols | |
\(\dashleftarrow\) | $\quad:\quad$\dashleftarrow
|
$\quad$AMSsymbols | |
\(\dashrightarrow\) | $\quad:\quad$\dashrightarrow
|
$\quad$AMSsymbols | |
\(\dashv\) | $\quad:\quad$\dashv
|
||
\(\dbinom a b\) | $\quad:\quad$\dbinom a b
|
$\quad$AMSmath | |
\(\DD\) | $\quad:\quad$\DD
|
$\qquad$that is: \mathcal D
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ddagger\) | $\quad:\quad$\ddagger
|
||
\(\ddddot x\) | $\quad:\quad$\ddddot x
|
$\quad$AMSmath | |
\(\dddot x\) | $\quad:\quad$\dddot x
|
$\quad$AMSmath | |
\(\ddot x\) | $\quad:\quad$\ddot x
|
||
\(\ddots\) | $\quad:\quad$\ddots
|
||
\(\deg\) | $\quad:\quad$\deg
|
||
\(30 \degrees\) | $\quad:\quad$30 \degrees
|
$\qquad$Degrees of Angle | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Delta\) | $\quad:\quad$\Delta
|
||
\(\delta\) | $\quad:\quad$\delta
|
||
\(\det\) | $\quad:\quad$\det
|
||
\(\dfrac a b\) | $\quad:\quad$\dfrac a b
|
$\quad$AMSmath | |
\(\diagdown\) | $\quad:\quad$\diagdown
|
$\quad$AMSsymbols | |
\(\diagup\) | $\quad:\quad$\diagup
|
$\quad$AMSsymbols | |
\(\diam\) | $\quad:\quad$\diam
|
$\qquad$Diameter | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\diamond\) | $\quad:\quad$\diamond
|
||
\(\Diamond\) | $\quad:\quad$\Diamond
|
$\quad$AMSsymbols | |
\(\diamondsuit\) | $\quad:\quad$\diamondsuit
|
||
\(\Dic n\) | $\quad:\quad$\Dic n
|
$\qquad$Dicyclic Group | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\digamma\) | $\quad:\quad$\digamma
|
$\quad$AMSsymbols | |
\(\dim\) | $\quad:\quad$\dim
|
||
\(\DiscreteUniform {n}\) | $\quad:\quad$\DiscreteUniform {n}
|
$\qquad$Discrete Uniform Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\div\) | $\quad:\quad$\div
|
||
\(\divideontimes\) | $\quad:\quad$\divideontimes
|
$\quad$AMSsymbols | |
\(a \divides b\) | $\quad:\quad$a \divides b
|
$\qquad$Divisibility | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\dn u\) | $\quad:\quad$\dn u
|
$\qquad$Elliptic Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Dom {f}\) | $\quad:\quad$\Dom {f}
|
$\qquad$Domain of Mapping | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\dot x\) | $\quad:\quad$\dot x
|
||
\(\doteq\) | $\quad:\quad$\doteq
|
||
\(\Doteq\) | $\quad:\quad$\Doteq
|
$\quad$AMSsymbols | |
\(\doteqdot\) | $\quad:\quad$\doteqdot
|
$\quad$AMSsymbols | |
\(\dotplus\) | $\quad:\quad$\dotplus
|
$\quad$AMSsymbols | |
\(\dots\) | $\quad:\quad$\dots , \ldots
|
$\qquad$defaults to lower position | |
\(x_1 + x_2 + \dotsb + x_n\) | $\quad:\quad$x_1 + x_2 + \dotsb + x_n
|
$\qquad$with binary operations and relations | |
\(x_1, x_2, \dotsc, x_n\) | $\quad:\quad$x_1, x_2, \dotsc, x_n
|
$\qquad$with commas | |
\(\iint \dotsi \int\) | $\quad:\quad$\iint \dotsi \int
|
$\qquad$between integrals | |
\(x_1 x_2 \dotsm x_n\) | $\quad:\quad$x_1 x_2 \dotsm x_n
|
$\qquad$with multiplication | |
\(A_1 \dotso A_n\) | $\quad:\quad$A_1 \dotso A_n
|
$\qquad$other dots | |
\(\doublebarwedge\) | $\quad:\quad$\doublebarwedge
|
$\quad$AMSsymbols | |
\(\doublecap\) | $\quad:\quad$\doublecap
|
$\quad$AMSsymbols | |
\(\doublecup\) | $\quad:\quad$\doublecup
|
$\quad$AMSsymbols | |
\(\Downarrow\) | $\quad:\quad$\Downarrow
|
||
\(\downarrow\) | $\quad:\quad$\downarrow
|
||
\(\downdownarrows\) | $\quad:\quad$\downdownarrows
|
$\quad$AMSsymbols | |
\(\downharpoonleft\) | $\quad:\quad$\downharpoonleft
|
$\quad$AMSsymbols | |
\(\downharpoonright\) | $\quad:\quad$\downharpoonright
|
$\quad$AMSsymbols | |
\(\dr a\) | $\quad:\quad$\dr a
|
$\qquad$Digital Root | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
E
\(\E\) | $\quad:\quad$\E
|
$\qquad$Elementary Charge | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\EE\) | $\quad:\quad$\EE
|
$\qquad$that is: \mathcal E
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Ei\) | $\quad:\quad$\Ei
|
$\qquad$Exponential Integral Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ell\) | $\quad:\quad$\ell
|
||
\(\empty\) | $\quad:\quad$\empty , \O
|
$\qquad$Empty Set: preferred on $\mathsf{Pr} \infty \mathsf{fWiki}$ | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\emptyset\) | $\quad:\quad$\emptyset
|
$\qquad$Empty Set: deprecated | |
\(a \enspace b\) | $\quad:\quad$a \enspace b
|
||
\(\epsilon\) | $\quad:\quad$\epsilon
|
||
\(\eqcirc\) | $\quad:\quad$\eqcirc
|
$\quad$AMSsymbols | |
\(\eqclass {x} {\RR}\) | $\quad:\quad$\eqclass {x} {\RR}
|
$\qquad$Equivalence Class | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\eqsim\) | $\quad:\quad$\eqsim
|
$\quad$AMSsymbols | |
\(\eqslantgtr\) | $\quad:\quad$\eqslantgtr
|
$\quad$AMSsymbols | |
\(\eqslantless\) | $\quad:\quad$\eqslantless
|
$\quad$AMSsymbols | |
\(\equiv\) | $\quad:\quad$\equiv
|
||
\(\erf\) | $\quad:\quad$\erf
|
$\qquad$Error Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\erfc\) | $\quad:\quad$\erfc
|
$\qquad$Complementary Error Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\eta\) | $\quad:\quad$\eta
|
||
\(\eth\) | $\quad:\quad$\eth
|
$\quad$AMSsymbols | |
\(\exists\) | $\quad:\quad$\exists
|
||
\(\exp\) | $\quad:\quad$\exp
|
||
\(\expect {X}\) | $\quad:\quad$\expect {X}
|
$\qquad$Expectation | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Exponential {\beta}\) | $\quad:\quad$\Exponential {\beta}
|
$\qquad$Exponential Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Ext {\gamma}\) | $\quad:\quad$\Ext {\gamma}
|
$\qquad$Exterior |
F
\(\F\) | $\quad:\quad$\F
|
$\qquad$False | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(32 \fahr\) | $\quad:\quad$32 \fahr
|
$\qquad$Degrees Fahrenheit | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\fallingdotseq\) | $\quad:\quad$\fallingdotseq
|
$\quad$AMSsymbols | |
\(\family {S_i}\) | $\quad:\quad$\family {S_i}
|
$\qquad$Indexed Family | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\fbox a\) | $\quad:\quad$\fbox a , \boxed{\text a}
|
||
\(\FF\) | $\quad:\quad$\FF
|
$\qquad$that is: \mathcal F
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Field {\RR}\) | $\quad:\quad$\Field {\RR}
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\Finv\) | $\quad:\quad$\Finv
|
$\quad$AMSsymbols | |
\(\Fix {\pi}\) | $\quad:\quad$\Fix {\pi}
|
$\qquad$Set of Fixed Elements | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\flat\) | $\quad:\quad$\flat
|
||
\(\floor {11.98}\) | $\quad:\quad$\floor {11.98}
|
$\qquad$Floor Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\forall\) | $\quad:\quad$\forall
|
||
\(\frac a b\) | $\quad:\quad$\frac a b
|
$\quad$AMSmath | |
\(\fractpart {x}\) | $\quad:\quad$\fractpart {x}
|
$\qquad$Fractional Part | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\frak A\) | $\quad:\quad$\frak A
|
||
\(\map \Frob {R}\) | $\quad:\quad$\map \Frob {R}
|
$\qquad$Frobenius Endomorphism | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\frown\) | $\quad:\quad$\frown
|
G
\(\Gal {S}\) | $\quad:\quad$\Gal {S}
|
$\qquad$Galois Group | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Game\) | $\quad:\quad$\Game
|
$\quad$AMSsymbols | |
\(\Gamma\) | $\quad:\quad$\Gamma
|
||
\(\gamma\) | $\quad:\quad$\gamma
|
||
\(\gcd\) | $\quad:\quad$\gcd
|
$\qquad$Greatest Common Divisor | |
\(\Gaussian {\mu} {\sigma^2}\) | $\quad:\quad$\Gaussian {\mu} {\sigma^2}
|
$\qquad$Normal Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ge\) | $\quad:\quad$\ge
|
||
\(\gen {S}\) | $\quad:\quad$\gen {S}
|
$\qquad$Generator | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\genfrac ( ] {2pt} 0 a b\) | $\quad:\quad$\genfrac ( ] {2pt} 0 a b
|
$\quad$AMSmath | |
\(\Geometric {p}\) | $\quad:\quad$\Geometric {p}
|
$\qquad$Geometric Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\geq\) | $\quad:\quad$\geq
|
||
\(\geqq\) | $\quad:\quad$\geqq
|
$\quad$AMSsymbols | |
\(\geqslant\) | $\quad:\quad$\geqslant
|
$\quad$AMSsymbols | |
\(\gets\) | $\quad:\quad$\gets
|
||
\(\GF\) | $\quad:\quad$\GF
|
$\qquad$Galois Field | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\gg\) | $\quad:\quad$\gg
|
||
\(\GG\) | $\quad:\quad$\GG
|
$\qquad$that is: \mathcal G
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ggg\) | $\quad:\quad$\ggg
|
$\quad$AMSsymbols | |
\(\gggtr\) | $\quad:\quad$\gggtr
|
$\quad$AMSsymbols | |
\(\gimel\) | $\quad:\quad$\gimel
|
$\quad$AMSsymbols | |
\(\GL {n, \R}\) | $\quad:\quad$\GL {n, \R}
|
$\qquad$General Linear Group | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\gnapprox\) | $\quad:\quad$\gnapprox
|
$\quad$AMSsymbols | |
\(\gneq\) | $\quad:\quad$\gneq
|
$\quad$AMSsymbols | |
\(\gneqq\) | $\quad:\quad$\gneqq
|
$\quad$AMSsymbols | |
\(\gnsim\) | $\quad:\quad$\gnsim
|
$\quad$AMSsymbols | |
\(\grad {p}\) | $\quad:\quad$\grad {p}
|
$\qquad$Gradient | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\grave e\) | $\quad:\quad$\grave e
|
||
\(\gt\) | $\quad:\quad$\gt , >
|
$\qquad$> is preferred
|
|
\(\gtrapprox\) | $\quad:\quad$\gtrapprox
|
$\quad$AMSsymbols | |
\(\gtrdot\) | $\quad:\quad$\gtrdot
|
$\quad$AMSsymbols | |
\(\gtreqless\) | $\quad:\quad$\gtreqless
|
$\quad$AMSsymbols | |
\(\gtreqqless\) | $\quad:\quad$\gtreqqless
|
$\quad$AMSsymbols | |
\(\gtrless\) | $\quad:\quad$\gtrless
|
$\quad$AMSsymbols | |
\(\gtrsim\) | $\quad:\quad$\gtrsim
|
$\quad$AMSsymbols | |
\(\gvertneqq\) | $\quad:\quad$\gvertneqq
|
$\quad$AMSsymbols |
H
\(\H\) | $\quad:\quad$\H
|
$\qquad$Set of Quaternions | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\harm {r} {z}\) | $\quad:\quad$\harm {r} {z}
|
$\qquad$General Harmonic Numbers | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\hat x\) | $\quad:\quad$\hat x
|
||
\(\hav \theta\) | $\quad:\quad$\hav \theta
|
$\qquad$Haversine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\hbar\) | $\quad:\quad$\hbar
|
||
\(\hbox{for $x > 0$} \) | $\quad:\quad$\hbox{for $x > 0$}
|
||
\(\hcf\) | $\quad:\quad$\hcf
|
$\qquad$Highest Common Factor | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\heartsuit\) | $\quad:\quad$\heartsuit
|
||
\(\HH\) | $\quad:\quad$\HH
|
$\qquad$Hilbert Space | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\hointl a b\) | $\quad:\quad$\hointl a b
|
$\qquad$Left Half-Open Interval | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\hointr c d\) | $\quad:\quad$\hointr c d
|
$\qquad$Right Half-Open Interval | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\hom\) | $\quad:\quad$\hom
|
||
\(\hookleftarrow\) | $\quad:\quad$\hookleftarrow
|
||
\(\hookrightarrow\) | $\quad:\quad$\hookrightarrow
|
||
\(\horectl a b\) | $\quad:\quad$\horectl a b
|
$\qquad$Half-Open Rectangle (on the left) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\horectr c d\) | $\quad:\quad$\horectr c d
|
$\qquad$Half-Open Rectangle (on the right) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\horectl {\mathbf a} {\mathbf b}\) | $\quad:\quad$\horectl {\mathbf a} {\mathbf b}
|
$\qquad$Half-Open Rectangle (on the left) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\horectr {\mathbf c} {\mathbf d}\) | $\quad:\quad$\horectr {\mathbf c} {\mathbf d}
|
$\qquad$Half-Open Rectangle (on the right) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \hskip 1em b\) | $\quad:\quad$a \hskip 1em b
|
||
\(\hslash\) | $\quad:\quad$\hslash
|
$\quad$AMSsymbols | |
\(a \hspace 7ex b\) | $\quad:\quad$a \hspace 7ex b
|
||
\(\Huge x\) | $\quad:\quad$\Huge x
|
||
\(\huge x\) | $\quad:\quad$\huge x
|
I
\(\ideal {a}\) | $\quad:\quad$\ideal {a}
|
$\qquad$Ideal of Ring | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\idotsint\) | $\quad:\quad$\idotsint
|
$\quad$AMSmath | |
\(\iff\) | $\quad:\quad$\iff
|
||
\(\II\) | $\quad:\quad$\II
|
$\qquad$that is: \mathcal I
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\iiiint\) | $\quad:\quad$\iiiint
|
$\quad$AMSmath | |
\(\iiint\) | $\quad:\quad$\iiint
|
||
\(\iint\) | $\quad:\quad$\iint
|
||
\(\map \Im z\) | $\quad:\quad$\map \Im z
|
$\qquad$Imaginary Part | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\imath\) | $\quad:\quad$\imath
|
$\qquad$for use in constructs, for example: $\hat \imath$ | |
\(\Img {f}\) | $\quad:\quad$\Img {f}
|
$\qquad$Image of Mapping | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\impliedby\) | $\quad:\quad$\impliedby
|
$\quad$AMSsymbols | |
\(\implies\) | $\quad:\quad$\implies
|
$\quad$AMSsymbols | |
\(\in\) | $\quad:\quad$\in
|
||
\(\index G H\) | $\quad:\quad$\index G H
|
$\qquad$Index of Subgroup | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\inf\) | $\quad:\quad$\inf
|
||
\(\infty\) | $\quad:\quad$\infty
|
||
\(\inj\) | $\quad:\quad$\inj
|
$\qquad$Canonical Injection | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\injlim\) | $\quad:\quad$\injlim
|
$\quad$AMSmath | |
\(\Inn {S}\) | $\quad:\quad$\Inn {S}
|
$\qquad$Group of Inner Automorphisms | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\innerprod {x} {y}\) | $\quad:\quad$\innerprod {x} {y}
|
$\qquad$Inner Product | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\int\) | $\quad:\quad$\int
|
||
\(\Int {\gamma}\) | $\quad:\quad$\Int {\gamma}
|
$\qquad$Interior | |
\(\intercal\) | $\quad:\quad$\intercal
|
$\quad$AMSsymbols | |
\(\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}\) | $\quad:\quad$\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}
|
$\qquad$Limits of Integration | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\intop\) | $\quad:\quad$\intop
|
||
\(\inv {f} {x}\) | $\quad:\quad$\inv {f} {x}
|
$\qquad$Inverse Mapping | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\invlaptrans {F}\) | $\quad:\quad$\invlaptrans {F}
|
$\qquad$Inverse Laplace Transform | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\iota\) | $\quad:\quad$\iota
|
||
\(a \it a\) | $\quad:\quad$a \it a
|
J
\(\JJ\) | $\quad:\quad$\JJ
|
$\qquad$that is: \mathcal J
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\jmath\) | $\quad:\quad$\jmath
|
$\qquad$for use in constructs, for example: $\hat \jmath$ | |
\(\Join\) | $\quad:\quad$\Join
|
$\quad$AMSsymbols |
K
\(\kappa\) | $\quad:\quad$\kappa
|
||
\(\Kei\) | $\quad:\quad$\Kei
|
$\qquad$Kei Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Ker\) | $\quad:\quad$\Ker
|
$\qquad$Ker Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ker\) | $\quad:\quad$\ker
|
||
\(a \kern-1.5pt b\) | $\quad:\quad$a \kern-1.5pt b
|
||
\(\KK\) | $\quad:\quad$\KK
|
$\qquad$that is: \mathcal K
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
L
\(\Lambda\) | $\quad:\quad$\Lambda
|
||
\(\lambda\) | $\quad:\quad$\lambda
|
||
\(\land\) | $\quad:\quad$\land
|
||
\(\langle\) | $\quad:\quad$\langle
|
||
\(\laptrans {f}\) | $\quad:\quad$\laptrans {f}
|
$\qquad$Laplace Transform | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\LARGE x\) | $\quad:\quad$\LARGE x
|
||
\(\Large x\) | $\quad:\quad$\Large x
|
||
\(\large x\) | $\quad:\quad$\large x
|
||
\(\LaTeX\) | $\quad:\quad$\LaTeX
|
||
\(\lbrace\) | $\quad:\quad$\lbrace
|
||
\(\lbrack\) | $\quad:\quad$\lbrack
|
||
\(\lceil\) | $\quad:\quad$\lceil
|
||
\(\lcm\) | $\quad:\quad$\lcm
|
$\qquad$Lowest Common Multiple | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \ldotp b\) | $\quad:\quad$a \ldotp b
|
||
\(a \ldots b\) | $\quad:\quad$a \ldots b
|
||
\(\le\) | $\quad:\quad$\le , \leq
|
||
\(\leadsto\) | $\quad:\quad$\leadsto
|
$\quad$AMSsymbols | |
\(\leadstoandfrom\) | $\quad:\quad$\leadstoandfrom
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\Leftarrow\) | $\quad:\quad$\Leftarrow
|
||
\(\leftarrow\) | $\quad:\quad$\leftarrow
|
||
\(\leftarrowtail\) | $\quad:\quad$\leftarrowtail
|
$\quad$AMSsymbols | |
\(\leftharpoondown\) | $\quad:\quad$\leftharpoondown
|
||
\(\leftharpoonup\) | $\quad:\quad$\leftharpoonup
|
||
\(\leftleftarrows\) | $\quad:\quad$\leftleftarrows
|
$\quad$AMSsymbols | |
\(\leftparen {a + b + c}\) | $\quad:\quad$\leftparen {a + b + c}
|
$\qquad$Parenthesis (left only) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Leftrightarrow\) | $\quad:\quad$\Leftrightarrow
|
||
\(\leftrightarrow\) | $\quad:\quad$\leftrightarrow
|
||
\(\leftrightarrows\) | $\quad:\quad$\leftrightarrows
|
$\quad$AMSsymbols | |
\(\leftrightharpoons\) | $\quad:\quad$\leftrightharpoons
|
$\quad$AMSsymbols | |
\(\leftrightsquigarrow\) | $\quad:\quad$\leftrightsquigarrow
|
$\quad$AMSsymbols | |
\(\root 3 \leftroot {-2} \of x\) | $\quad:\quad$\root 3 \leftroot {-2} \of x
|
||
\(\leftset {a, b, c}\) | $\quad:\quad$\leftset {a, b, c}
|
$\qquad$Conventional set notation (left only) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\leftthreetimes\) | $\quad:\quad$\leftthreetimes
|
$\quad$AMSsymbols | |
\(\len\) | $\quad:\quad$\len
|
$\qquad$Length Function: various | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\leq\) | $\quad:\quad$\leq , \le
|
||
\(\leqq\) | $\quad:\quad$\leqq
|
$\quad$AMSsymbols | |
\(\leqslant\) | $\quad:\quad$\leqslant
|
$\quad$AMSsymbols | |
\(\lessapprox\) | $\quad:\quad$\lessapprox
|
$\quad$AMSsymbols | |
\(\lessdot\) | $\quad:\quad$\lessdot
|
$\quad$AMSsymbols | |
\(\lesseqgtr\) | $\quad:\quad$\lesseqgtr
|
$\quad$AMSsymbols | |
\(\lesseqqgtr\) | $\quad:\quad$\lesseqqgtr
|
$\quad$AMSsymbols | |
\(\lessgtr\) | $\quad:\quad$\lessgtr
|
$\quad$AMSsymbols | |
\(\lesssim\) | $\quad:\quad$\lesssim
|
$\quad$AMSsymbols | |
\(\lfloor\) | $\quad:\quad$\lfloor
|
||
\(\lg\) | $\quad:\quad$\lg
|
||
\(\lgroup\) | $\quad:\quad$\lgroup
|
||
\(\lhd\) | $\quad:\quad$\lhd
|
$\quad$AMSsymbols | |
\(\Li\) | $\quad:\quad$\Li
|
$\qquad$Eulerian Logarithmic Integral | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\li\) | $\quad:\quad$\li
|
$\qquad$Logarithmic Integral | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\lim\) | $\quad:\quad$\lim
|
||
\(\liminf\) | $\quad:\quad$\liminf
|
||
\(\int\limits_a^b\) | $\quad:\quad$\int\limits_a^b
|
||
\(\limsup\) | $\quad:\quad$\limsup
|
||
\(\LL\) | $\quad:\quad$\LL
|
$\qquad$that is: \mathcal L
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\ll\) | $\quad:\quad$\ll
|
||
\(a \mathrel { {\le} \llap {/} }b\) | $\quad:\quad$a \mathrel { {\le} \llap {/} }b
|
||
\(\llcorner\) | $\quad:\quad$\llcorner
|
$\quad$AMSsymbols | |
\(\Lleftarrow\) | $\quad:\quad$\Lleftarrow
|
$\quad$AMSsymbols | |
\(\lll\) | $\quad:\quad$\lll
|
$\quad$AMSsymbols | |
\(\llless\) | $\quad:\quad$\llless
|
$\quad$AMSsymbols | |
\(\lmoustache\) | $\quad:\quad$\lmoustache
|
||
\(\ln\) | $\quad:\quad$\ln
|
||
\(\Ln\) | $\quad:\quad$\Ln
|
$\qquad$Complex Natural Logarithm: Principal Branch | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\lnapprox\) | $\quad:\quad$\lnapprox
|
$\quad$AMSsymbols | |
\(\lneq\) | $\quad:\quad$\lneq
|
$\quad$AMSsymbols | |
\(\lneqq\) | $\quad:\quad$\lneqq
|
$\quad$AMSsymbols | |
\(\lnot\) | $\quad:\quad$\lnot , \neg
|
||
\(\lnsim\) | $\quad:\quad$\lnsim
|
$\quad$AMSsymbols | |
\(\log\) | $\quad:\quad$\log
|
||
\(\Log\) | $\quad:\quad$\Log
|
$\qquad$Complex Natural Logarithm: Principal Branch | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Longleftarrow\) | $\quad:\quad$\Longleftarrow
|
||
\(\longleftarrow\) | $\quad:\quad$\longleftarrow
|
||
\(\Longleftrightarrow\) | $\quad:\quad$\Longleftrightarrow
|
||
\(\longleftrightarrow\) | $\quad:\quad$\longleftrightarrow
|
||
\(\longmapsto\) | $\quad:\quad$\longmapsto
|
||
\(\Longrightarrow\) | $\quad:\quad$\Longrightarrow
|
||
\(\longrightarrow\) | $\quad:\quad$\longrightarrow
|
||
\(\looparrowleft\) | $\quad:\quad$\looparrowleft
|
$\quad$AMSsymbols | |
\(\looparrowright\) | $\quad:\quad$\looparrowright
|
$\quad$AMSsymbols | |
\(\lor\) | $\quad:\quad$\lor
|
||
\(a \lower 2pt b c\) | $\quad:\quad$a \lower 2pt b c
|
||
\(\loweradjoint {\mathbf J}\) | $\quad:\quad$\loweradjoint {\mathbf J}
|
$\qquad$Galois Connections | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\lozenge\) | $\quad:\quad$\lozenge
|
$\quad$AMSsymbols | |
\(\lrcorner\) | $\quad:\quad$\lrcorner
|
$\quad$AMSsymbols | |
\(\Lsh\) | $\quad:\quad$\Lsh
|
$\quad$AMSsymbols | |
\(\lt\) | $\quad:\quad$\lt , <
|
$\qquad$< is preferred
|
|
\(\ltimes\) | $\quad:\quad$\ltimes
|
$\quad$AMSsymbols | |
\(\lVert\) | $\quad:\quad$\lVert
|
$\quad$AMSmath | |
\(\lvert\) | $\quad:\quad$\lvert
|
$\quad$AMSmath | |
\(\lvertneqq\) | $\quad:\quad$\lvertneqq
|
$\quad$AMSsymbols |
M
\(\maltese\) | $\quad:\quad$\maltese
|
$\quad$AMSsymbols | |
\(\map {f} {x}\) | $\quad:\quad$\map {f} {x}
|
$\qquad$Mapping or Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\mapsto\) | $\quad:\quad$\mapsto
|
||
\(\mathbb A\) | $\quad:\quad$\mathbb A
|
||
\(\mathbf A\) | $\quad:\quad$\mathbf A
|
||
\(a \mathbin {\Diamond} b\) | $\quad:\quad$a \mathbin {\Diamond} b
|
||
\(\mathcal A\) | $\quad:\quad$\mathcal A
|
||
\(\mathfrak A\) | $\quad:\quad$\mathfrak A
|
||
\(ab \mathinner {\text{cd} } ef\) | $\quad:\quad$ab \mathinner {\text{cd} } ef
|
||
\(\mathit A\) | $\quad:\quad$\mathit A
|
||
\(a \mathop b c\) | $\quad:\quad$a \mathop b c
|
||
\(a \mathord + b\) | $\quad:\quad$a \mathord + b
|
||
\(1 \mathpunct . 234\) | $\quad:\quad$1 \mathpunct . 234
|
||
\(a \mathrel \# b\) | $\quad:\quad$a \mathrel \# b
|
||
\(\mathring A\) | $\quad:\quad$\mathring A
|
$\quad$AMSmath | |
\(\mathrm A\) | $\quad:\quad$\mathrm A
|
||
\(\mathscr A\) | $\quad:\quad$\mathscr A
|
||
\(\mathsf A\) | $\quad:\quad$\mathsf A
|
||
\(\sqrt {\mathstrut 3} \) | $\quad:\quad$\sqrt {\mathstrut 3}
|
||
\(\mathtt A\) | $\quad:\quad$\mathtt A
|
||
\(\matrix {a & b \cr c & d} \) | $\quad:\quad$\matrix {a & b \cr c & d}
|
||
\(\max\) | $\quad:\quad$\max
|
||
\(a \mbox {b} c\) | $\quad:\quad$a \mbox {b} c
|
||
\(\measuredangle\) | $\quad:\quad$\measuredangle
|
$\quad$AMSsymbols | |
\(\meta {metasymbol}\) | $\quad:\quad$\meta {metasymbol}
|
$\qquad$Metasymbol | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\mho\) | $\quad:\quad$\mho
|
$\quad$AMSsymbols | |
\(a \mid b\) | $\quad:\quad$a \mid b
|
||
\(\min\) | $\quad:\quad$\min
|
||
\(27 \minutes\) | $\quad:\quad$27 \minutes
|
$\qquad$Minutes of Angle or Minutes of Time | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\mit A\) | $\quad:\quad$\mit A
|
||
\(a \mkern 18mu b\) | $\quad:\quad$a \mkern 18mu b
|
||
\(\MM\) | $\quad:\quad$\MM
|
$\qquad$that is: \mathcal M
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\mod p\) | $\quad:\quad$\mod p
|
||
\(\models\) | $\quad:\quad$\models
|
||
\(\mp\) | $\quad:\quad$\mp
|
||
\(a \mskip 18mu b\) | $\quad:\quad$a \mskip 18mu b
|
||
\(a \mspace 18mu b\) | $\quad:\quad$a \mspace 18mu b
|
||
\(\Mu\) | $\quad:\quad$\Mu
|
||
\(\mu\) | $\quad:\quad$\mu
|
||
\(\Mult\) | $\quad:\quad$\Mult
|
$\qquad$Multiplication as a Primitive Recursive Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\multimap\) | $\quad:\quad$\multimap
|
$\quad$AMSsymbols | |
\(\multiset {a, b, c}\) | $\quad:\quad$\multiset {a, b, c}
|
$\qquad$Multiset | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
N
\(\N\) | $\quad:\quad$\N
|
$\qquad$Set of Natural Numbers | |
\(\nabla\) | $\quad:\quad$\nabla
|
||
\(\natural\) | $\quad:\quad$\natural
|
||
\(\ncong\) | $\quad:\quad$\ncong
|
$\quad$AMSsymbols | |
\(\ne\) | $\quad:\quad$\ne , \neq
|
||
\(\nearrow\) | $\quad:\quad$\nearrow
|
||
\(\map \nec P\) | $\quad:\quad$\map \nec P
|
$\qquad$it is necessary that $P$ | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\neg\) | $\quad:\quad$\neg
|
||
\(\NegativeBinomial {n} {p}\) | $\quad:\quad$\NegativeBinomial {n} {p}
|
$\qquad$Negative Binomial Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \negmedspace b\) | $\quad:\quad$a \negmedspace b
|
$\qquad$Negative medium space: $\frac 2 9$ or $\frac 4 {18}$ of a quad | $\quad$AMSmath |
\(a \negthickspace b\) | $\quad:\quad$a \negthickspace b
|
$\qquad$Negative thick space: $\frac 5 {18}$ of a quad | $\quad$AMSsymbols |
\(a \negthinspace b\) | $\quad:\quad$a \negthinspace b , a \! b
|
$\qquad$Negative thin space: $\frac 1 6$ or $\frac 3 {18}$ of a quad | |
\(\neq\) | $\quad:\quad$\neq , \ne
|
||
\(\nexists\) | $\quad:\quad$\nexists
|
$\quad$AMSsymbols | |
\(\ngeq\) | $\quad:\quad$\ngeq
|
$\quad$AMSsymbols | |
\(\ngeqq\) | $\quad:\quad$\ngeqq
|
$\quad$AMSsymbols | |
\(\ngeqslant\) | $\quad:\quad$\ngeqslant
|
$\quad$AMSsymbols | |
\(\ngtr\) | $\quad:\quad$\ngtr
|
$\quad$AMSsymbols | |
\(\ni\) | $\quad:\quad$\ni , \owns
|
||
\(\Nil {R}\) | $\quad:\quad$\Nil {R}
|
$\qquad$Nilradical of Ring | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\nint {11.98}\) | $\quad:\quad$\nint {11.98}
|
$\qquad$Nearest Integer Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\nLeftarrow\) | $\quad:\quad$\nLeftarrow
|
$\quad$AMSsymbols | |
\(\nleftarrow\) | $\quad:\quad$\nleftarrow
|
$\quad$AMSsymbols | |
\(\nLeftrightarrow\) | $\quad:\quad$\nLeftrightarrow
|
$\quad$AMSsymbols | |
\(\nleftrightarrow\) | $\quad:\quad$\nleftrightarrow
|
$\quad$AMSsymbols | |
\(\nleq\) | $\quad:\quad$\nleq
|
$\quad$AMSsymbols | |
\(\nleqq\) | $\quad:\quad$\nleqq
|
$\quad$AMSsymbols | |
\(\nleqslant\) | $\quad:\quad$\nleqslant
|
$\quad$AMSsymbols | |
\(\nless\) | $\quad:\quad$\nless
|
$\quad$AMSsymbols | |
\(\nmid\) | $\quad:\quad$\nmid
|
$\quad$AMSsymbols | |
\(\NN\) | $\quad:\quad$\NN
|
$\qquad$that is: \mathcal N
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \nobreakspace b\) | $\quad:\quad$a \nobreakspace b , a ~ b
|
$\qquad$Standard space, no line break | $\quad$AMSmath |
\(\not A\) | $\quad:\quad$\not A
|
||
\(\norm {x^2}\) | $\quad:\quad$\norm {x^2}
|
$\qquad$Norm | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\notin\) | $\quad:\quad$\notin
|
||
\(\nparallel\) | $\quad:\quad$\nparallel
|
$\quad$AMSsymbols | |
\(\nprec\) | $\quad:\quad$\nprec
|
$\quad$AMSsymbols | |
\(\npreceq\) | $\quad:\quad$\npreceq
|
$\quad$AMSsymbols | |
\(\nRightarrow\) | $\quad:\quad$\nRightarrow
|
$\quad$AMSsymbols | |
\(\nrightarrow\) | $\quad:\quad$\nrightarrow
|
$\quad$AMSsymbols | |
\(\nshortmid\) | $\quad:\quad$\nshortmid
|
$\quad$AMSsymbols | |
\(\nshortparallel\) | $\quad:\quad$\nshortparallel
|
$\quad$AMSsymbols | |
\(\nsim\) | $\quad:\quad$\nsim
|
$\quad$AMSsymbols | |
\(\nsubseteq\) | $\quad:\quad$\nsubseteq
|
$\quad$AMSsymbols | |
\(\nsubseteqq\) | $\quad:\quad$\nsubseteqq
|
$\quad$AMSsymbols | |
\(\nsucc\) | $\quad:\quad$\nsucc
|
$\quad$AMSsymbols | |
\(\nsucceq\) | $\quad:\quad$\nsucceq
|
$\quad$AMSsymbols | |
\(\nsupseteq\) | $\quad:\quad$\nsupseteq
|
$\quad$AMSsymbols | |
\(\nsupseteqq\) | $\quad:\quad$\nsupseteqq
|
$\quad$AMSsymbols | |
\(\ntriangleleft\) | $\quad:\quad$\ntriangleleft
|
$\quad$AMSsymbols | |
\(\ntrianglelefteq\) | $\quad:\quad$\ntrianglelefteq
|
$\quad$AMSsymbols | |
\(\ntriangleright\) | $\quad:\quad$\ntriangleright
|
$\quad$AMSsymbols | |
\(\ntrianglerighteq\) | $\quad:\quad$\ntrianglerighteq
|
$\quad$AMSsymbols | |
\(\Nu\) | $\quad:\quad$\Nu
|
||
\(\nu\) | $\quad:\quad$\nu
|
||
\(\nVDash\) | $\quad:\quad$\nVDash
|
$\quad$AMSsymbols | |
\(\nVdash\) | $\quad:\quad$\nVdash
|
$\quad$AMSsymbols | |
\(\nvDash\) | $\quad:\quad$\nvDash
|
$\quad$AMSsymbols | |
\(\nvdash\) | $\quad:\quad$\nvdash
|
$\quad$AMSsymbols | |
\(\nwarrow\) | $\quad:\quad$\nwarrow
|
O
\(\O\) | $\quad:\quad$\O , \empty
|
$\qquad$Empty Set: $\mathsf{Pr} \infty \mathsf{fWiki}$ preferred | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\odot\) | $\quad:\quad$\odot
|
||
\(\oint\) | $\quad:\quad$\oint
|
||
\(\oldpence\) | $\quad:\quad$\oldpence
|
$\qquad$old pence | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\oldstyle A\) | $\quad:\quad$\oldstyle A
|
||
\(\Omega\) | $\quad:\quad$\Omega
|
||
\(\omega\) | $\quad:\quad$\omega
|
||
\(\omicron\) | $\quad:\quad$\omicron
|
||
\(\ominus\) | $\quad:\quad$\ominus
|
||
\(\On\) | $\quad:\quad$\On
|
$\qquad$Class of All Ordinals | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\OO\) | $\quad:\quad$\OO
|
$\qquad$that is: \mathcal O
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\oo\) | $\quad:\quad$\oo
|
$\qquad$that is: \mathcal o
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\openint {a_1} {a_2}\) | $\quad:\quad$\openint {a_1} {a_2}
|
$\qquad$Open Interval | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\openrect {\mathbf a_1} {\mathbf a_2}\) | $\quad:\quad$\openrect {\mathbf a_1} {\mathbf a_2}
|
$\qquad$Open Rectangle | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\operatorname {abc}\) | $\quad:\quad$\operatorname {abc}
|
$\quad$AMSmath | |
\(\oplus\) | $\quad:\quad$\oplus
|
||
\(\Orb {S}\) | $\quad:\quad$\Orb {S}
|
$\qquad$Orbit | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Ord {S}\) | $\quad:\quad$\Ord {S}
|
$\qquad$$S$ is an Ordinal | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\order {G}\) | $\quad:\quad$\order {G}
|
$\qquad$Order of Structure, and so on | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\oslash\) | $\quad:\quad$\oslash
|
||
\(\ot\) | $\quad:\quad$\ot
|
$\qquad$Order Type | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\otimes\) | $\quad:\quad$\otimes
|
||
\(\Out {G}\) | $\quad:\quad$\Out {G}
|
$\qquad$Group of Outer Automorphisms | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \over x\) | $\quad:\quad$a \over x
|
||
\(\overbrace {abcde} \) | $\quad:\quad$\overbrace {abcde}
|
||
\(\overleftarrow {abcde} \) | $\quad:\quad$\overleftarrow {abcde}
|
||
\(\overleftrightarrow {abcde} \) | $\quad:\quad$\overleftrightarrow {abcde}
|
||
\(\overline {abcde} \) | $\quad:\quad$\overline {abcde}
|
||
\(\overrightarrow {abcde} \) | $\quad:\quad$\overrightarrow {abcde}
|
||
\(\overset {xyz} {abcde} \) | $\quad:\quad$\overset {xyz} {abcde}
|
||
\({xyz} \overwithdelims ( ) {abc} \) | $\quad:\quad${xyz} \overwithdelims ( ) {abc}
|
||
\(\owns\) | $\quad:\quad$\owns , \ni
|
P
\(\P\) | $\quad:\quad$\P
|
||
\(\parallel\) | $\quad:\quad$\parallel
|
||
\(\paren {a, b, c}\) | $\quad:\quad$\paren {a, b, c}
|
$\qquad$Parenthesis | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\partial\) | $\quad:\quad$\partial
|
||
\(\perp\) | $\quad:\quad$\perp
|
||
\(\ph z\) | $\quad:\quad$\ph z
|
$\qquad$Phase | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Phi\) | $\quad:\quad$\Phi
|
||
\(\phi\) | $\quad:\quad$\phi
|
||
\(\Pi\) | $\quad:\quad$\Pi
|
||
\(\pi\) | $\quad:\quad$\pi
|
||
\(\pitchfork\) | $\quad:\quad$\pitchfork
|
$\quad$AMSsymbols | |
\(\pm\) | $\quad:\quad$\pm
|
||
\(\pmatrix {a & b \cr c & d} \) | $\quad:\quad$\pmatrix {a & b \cr c & d}
|
||
\(\pmb c\) | $\quad:\quad$\pmb c
|
||
\(a \pmod z\) | $\quad:\quad$a \pmod z
|
||
\(a b \pod c\) | $\quad:\quad$a b \pod c
|
||
\(\polar {r, \theta}\) | $\quad:\quad$\polar {r, \theta}
|
$\qquad$Polar Form of Complex Number | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Poisson {\lambda}\) | $\quad:\quad$\Poisson {\lambda}
|
$\qquad$Poisson Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\map \pos P\) | $\quad:\quad$\map \pos P
|
$\qquad$it is possible that $P$ | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\pounds\) | $\quad:\quad$\pounds
|
$\qquad$Pound Sterling | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\powerset {S}\) | $\quad:\quad$\powerset {S}
|
$\qquad$Power Set | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\PP\) | $\quad:\quad$\PP
|
$\qquad$that is: \mathcal P
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Pr\) | $\quad:\quad$\Pr
|
$\qquad$Probability Measure | |
\(\pr_j\) | $\quad:\quad$\pr_j
|
$\qquad$Projection | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\prec\) | $\quad:\quad$\prec
|
||
\(\precapprox\) | $\quad:\quad$\precapprox
|
$\quad$AMSsymbols | |
\(\preccurlyeq\) | $\quad:\quad$\preccurlyeq
|
$\quad$AMSsymbols | |
\(\preceq\) | $\quad:\quad$\preceq
|
||
\(\precnapprox\) | $\quad:\quad$\precnapprox
|
$\quad$AMSsymbols | |
\(\precneqq\) | $\quad:\quad$\precneqq
|
$\quad$AMSsymbols | |
\(\precnsim\) | $\quad:\quad$\precnsim
|
$\quad$AMSsymbols | |
\(\precsim\) | $\quad:\quad$\precsim
|
$\quad$AMSsymbols | |
\(\Preimg {f}\) | $\quad:\quad$\Preimg {f}
|
$\qquad$Preimage of Mapping | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\prime\) | $\quad:\quad$\prime
|
||
\(\prod\) | $\quad:\quad$\prod
|
||
\(\map {\proj_\mathbf v} {\mathbf u}\) | $\quad:\quad$\map {\proj_\mathbf v} {\mathbf u}
|
$\qquad$Vector Projection | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\projlim\) | $\quad:\quad$\projlim
|
$\quad$AMSmath | |
\(\propto\) | $\quad:\quad$\propto
|
||
\(\Psi\) | $\quad:\quad$\Psi
|
||
\(\psi\) | $\quad:\quad$\psi
|
||
\(\PV\) | $\quad:\quad$\PV
|
$\qquad$Cauchy Principal Value | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
Q
\(\Q\) | $\quad:\quad$\Q
|
$\qquad$Set of Rational Numbers | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\QQ\) | $\quad:\quad$\QQ
|
$\qquad$that is: \mathcal I
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \qquad b\) | $\quad:\quad$a \qquad b
|
||
\(a \quad b\) | $\quad:\quad$a \quad b
|
R
\(\R\) | $\quad:\quad$\R
|
$\qquad$Set of Real Numbers | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \raise 2pt b c\) | $\quad:\quad$a \raise 2pt b c
|
||
\(\radians\) | $\quad:\quad$\radians
|
$\qquad$Radian | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Rad\) | $\quad:\quad$\Rad
|
$\qquad$Radical of Ideal of Ring | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\rangle\) | $\quad:\quad$\rangle
|
||
\(30 \rankine\) | $\quad:\quad$30 \rankine
|
$\qquad$Degrees Rankine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\rbrace\) | $\quad:\quad$\rbrace
|
||
\(\rbrack\) | $\quad:\quad$\rbrack
|
||
\(\rceil\) | $\quad:\quad$\rceil
|
||
\(y \rd x\) | $\quad:\quad$y \rd x
|
$\qquad$Roman $\d$ for use in Integrals | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\rD\) | $\quad:\quad$\rD
|
$\qquad$Differential Operator | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(y \rdelta x\) | $\quad:\quad$y \rdelta x
|
$\qquad$Delta operator for use in sums | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\map \Re z\) | $\quad:\quad$\map \Re z
|
$\qquad$Real Part | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\relcomp {S} {A}\) | $\quad:\quad$\relcomp {S} {A}
|
$\qquad$Relative Complement | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\rem\) | $\quad:\quad$\rem
|
$\qquad$Remainder | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Res {f} {z_0}\) | $\quad:\quad$\Res {f} {z_0}
|
$\qquad$Residue | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\restriction\) | $\quad:\quad$\restriction
|
$\quad$AMSsymbols | |
\(\rfloor\) | $\quad:\quad$\rfloor
|
||
\(\rgroup\) | $\quad:\quad$\rgroup
|
||
\(\rhd\) | $\quad:\quad$\rhd
|
$\quad$AMSsymbols | |
\(\rho\) | $\quad:\quad$\rho
|
||
\(\Rightarrow\) | $\quad:\quad$\Rightarrow
|
||
\(\rightarrow\) | $\quad:\quad$\rightarrow
|
||
\(\rightarrowtail\) | $\quad:\quad$\rightarrowtail
|
$\quad$AMSsymbols | |
\(\rightharpoondown\) | $\quad:\quad$\rightharpoondown
|
||
\(\rightharpoonup\) | $\quad:\quad$\rightharpoonup
|
||
\(\rightleftarrows\) | $\quad:\quad$\rightleftarrows
|
$\quad$AMSsymbols | |
\(\rightleftharpoons\) | $\quad:\quad$\rightleftharpoons
|
||
\(\rightleftharpoons\) | $\quad:\quad$\rightleftharpoons
|
$\quad$AMSsymbols | |
\(\rightparen {a + b + c}\) | $\quad:\quad$\rightparen {a + b + c}
|
$\qquad$Parenthesis (right only) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\rightrightarrows\) | $\quad:\quad$\rightrightarrows
|
$\quad$AMSsymbols | |
\(\rightset {a, b, c}\) | $\quad:\quad$\rightset {a, b, c}
|
$\qquad$Conventional set notation (right only) | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\rightsquigarrow\) | $\quad:\quad$\rightsquigarrow
|
$\quad$AMSsymbols | |
\(\rightthreetimes\) | $\quad:\quad$\rightthreetimes
|
$\quad$AMSsymbols | |
\(\risingdotseq\) | $\quad:\quad$\risingdotseq
|
$\quad$AMSsymbols | |
\(a \mathrel {\rlap {/} {<} } b\) | $\quad:\quad$a \mathrel {\rlap {/} {<} } b
|
||
\(\rm x\) | $\quad:\quad$\rm x
|
$\qquad$Roman font | |
\(\rmoustache\) | $\quad:\quad$\rmoustache
|
||
\(\Rng {f}\) | $\quad:\quad$\Rng {f}
|
$\qquad$Range of Mapping | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\root \of 3\) | $\quad:\quad$\root \of 3
|
$\qquad$Also see \sqrt
|
|
\(\RR\) | $\quad:\quad$\RR
|
$\qquad$that is: \mathcal R
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Rrightarrow\) | $\quad:\quad$\Rrightarrow
|
$\quad$AMSsymbols | |
\(\Rsh\) | $\quad:\quad$\Rsh
|
$\quad$AMSsymbols | |
\(\rtimes\) | $\quad:\quad$\rtimes
|
$\quad$AMSsymbols | |
\(a \Rule{3px} {1ex} {2ex} b\) | $\quad:\quad$a \Rule{3px} {1ex} {2ex} b
|
$\qquad$Compare \Space
|
$\quad$non-standard |
\(\rVert\) | $\quad:\quad$\rVert
|
$\quad$AMSmath | |
\(\rvert\) | $\quad:\quad$\rvert
|
$\quad$AMSmath |
S
\(\S\) | $\quad:\quad$\S
|
||
\(\scr a\) | $\quad:\quad$\scr a
|
||
\(\scriptscriptstyle a\) | $\quad:\quad$\scriptscriptstyle a
|
||
\(\scriptsize a\) | $\quad:\quad$\scriptsize a
|
||
\(\scriptstyle a\) | $\quad:\quad$\scriptstyle a
|
||
\(\searrow\) | $\quad:\quad$\searrow
|
||
\(\sec\) | $\quad:\quad$\sec
|
$\qquad$Secant Function | |
\(\sech\) | $\quad:\quad$\sech
|
$\qquad$Hyperbolic Secant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Sech\) | $\quad:\quad$\Sech
|
$\qquad$Hyperbolic Secant | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(53 \seconds\) | $\quad:\quad$53 \seconds
|
$\qquad$Seconds of Angle or Seconds of Time | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\sequence {a_n}\) | $\quad:\quad$\sequence {a_n}
|
$\qquad$Sequence | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\set {x, y, z}\) | $\quad:\quad$\set {x, y, z}
|
$\qquad$Conventional set notation | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\setminus\) | $\quad:\quad$\setminus
|
$\qquad$Set Difference | |
\(\sf a\) | $\quad:\quad$\sf a
|
||
\(\sgn\) | $\quad:\quad$\sgn
|
$\qquad$Signum | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\sharp\) | $\quad:\quad$\sharp
|
||
\(\ShiftedGeometric {p}\) | $\quad:\quad$\ShiftedGeometric {p}
|
$\qquad$Shifted Geometric Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\shillings\) | $\quad:\quad$\shillings
|
$\qquad$shillings | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\shortmid\) | $\quad:\quad$\shortmid
|
$\quad$AMSsymbols | |
\(\shortparallel\) | $\quad:\quad$\shortparallel
|
$\quad$AMSsymbols | |
\(\Si\) | $\quad:\quad$\Si
|
$\qquad$Sine Integral Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\sideset{_1^2}{_3^4}\sum\) | $\quad:\quad$\sideset{_1^2}{_3^4}\sum
|
$\quad$AMSmath | |
\(\Sigma\) | $\quad:\quad$\Sigma
|
||
\(\sigma\) | $\quad:\quad$\sigma
|
||
\(\sim\) | $\quad:\quad$\sim
|
||
\(\simeq\) | $\quad:\quad$\simeq
|
||
\(\sin\) | $\quad:\quad$\sin
|
$\qquad$Sine | |
\(\sinh\) | $\quad:\quad$\sinh
|
$\qquad$Hyperbolic Sine | |
\(\Sinh\) | $\quad:\quad$\Sinh
|
$\qquad$Hyperbolic Sine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\size {x}\) | $\quad:\quad$\size {x}
|
$\qquad$Absolute Value, and so on | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\skew 8 \tilde M\) | $\quad:\quad$\skew 8 \tilde M
|
||
\(\SL {n, \R}\) | $\quad:\quad$\SL {n, \R}
|
$\qquad$Special Linear Group | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\small a\) | $\quad:\quad$\small a
|
||
\(\smallfrown\) | $\quad:\quad$\smallfrown
|
$\quad$AMSsymbols | |
\(\smallint\) | $\quad:\quad$\smallint
|
||
\(\smallsetminus\) | $\quad:\quad$\smallsetminus
|
$\quad$AMSsymbols | |
\(\smallsmile\) | $\quad:\quad$\smallsmile
|
$\quad$AMSsymbols | |
\(\smile\) | $\quad:\quad$\smile
|
||
\(\sn u\) | $\quad:\quad$\sn u
|
$\qquad$Elliptic Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \space b\) | $\quad:\quad$a \space b , a \ b
|
||
\(a \Space {5px} {4ex} {2ex}^b_c d\) | $\quad:\quad$a \Space {5px} {4ex} {2ex}^b_c d
|
$\qquad$Compare \Rule
|
|
\(\spadesuit\) | $\quad:\quad$\spadesuit
|
||
\(\span\) | $\quad:\quad$\span
|
$\qquad$Linear Span | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Spec {R}\) | $\quad:\quad$\Spec {R}
|
$\qquad$Spectrum of Ring | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\sphericalangle\) | $\quad:\quad$\sphericalangle
|
$\quad$AMSsymbols | |
\(\sqbrk {a}\) | $\quad:\quad$\sqbrk {a}
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\sqcap\) | $\quad:\quad$\sqcap
|
||
\(\sqcup\) | $\quad:\quad$\sqcup
|
||
\(\sqrt x\) | $\quad:\quad$\sqrt x
|
$\qquad$Square Root | |
\(\sqrt [n] x\) | $\quad:\quad$\sqrt [n] x
|
$\qquad$$n$th Root | |
\(\sqsubset\) | $\quad:\quad$\sqsubset
|
$\quad$AMSsymbols | |
\(\sqsubseteq\) | $\quad:\quad$\sqsubseteq
|
||
\(\sqsupset\) | $\quad:\quad$\sqsupset
|
$\quad$AMSsymbols | |
\(\sqsupseteq\) | $\quad:\quad$\sqsupseteq
|
||
\(\square\) | $\quad:\quad$\square
|
$\quad$AMSsymbols | |
\(\SS\) | $\quad:\quad$\SS
|
$\qquad$that is: \mathcal S
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Stab x\) | $\quad:\quad$\Stab x
|
$\qquad$Stabilizer | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(a \stackrel {\rm def} = b\) | $\quad:\quad$a \stackrel {\rm def} = b
|
||
\(\star\) | $\quad:\quad$\star
|
||
\(\stratgame {N} {A_i} {\succsim_i}\) | $\quad:\quad$\stratgame {N} {A_i} {\succsim_i}
|
$\qquad$Strategic Game | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\struct {G, \circ}\) | $\quad:\quad$\struct {G, \circ}
|
$\qquad$Algebraic Structure | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\StudentT {k}\) | $\quad:\quad$\StudentT {k}
|
$\qquad$Student's t-Distribution | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\style{color:red} x\) | $\quad:\quad$\style{color:red} x
|
$\qquad$non-standard | $\quad$[HTML] |
\(\SU {n}\) | $\quad:\quad$\SU {n}
|
$\qquad$Unimodular Unitary Group | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\subset\) | $\quad:\quad$\subset
|
$\qquad$Proper Subset (deprecated) | |
\(\Subset\) | $\quad:\quad$\Subset
|
$\quad$AMSsymbols | |
\(\subseteq\) | $\quad:\quad$\subseteq
|
$\qquad$Subset ($\mathsf{Pr} \infty \mathsf{fWiki}$ preferred) | |
\(\subseteqq\) | $\quad:\quad$\subseteqq
|
$\qquad$Subset | $\quad$AMSsymbols |
\(\subsetneq\) | $\quad:\quad$\subsetneq
|
$\qquad$Proper Subset ($\mathsf{Pr} \infty \mathsf{fWiki}$ preferred) | $\quad$AMSsymbols |
\(\subsetneqq\) | $\quad:\quad$\subsetneqq
|
$\qquad$Proper Subset | $\quad$AMSsymbols |
\(\substack {abc} \\ {xyz}\) | $\quad:\quad$\substack {abc} \\ {xyz}
|
$\quad$AMSmath | |
\(\Succ\) | $\quad:\quad$\Succ
|
$\qquad$Successor Function | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\succ\) | $\quad:\quad$\succ
|
||
\(\succapprox\) | $\quad:\quad$\succapprox
|
$\quad$AMSsymbols | |
\(\succcurlyeq\) | $\quad:\quad$\succcurlyeq
|
$\quad$AMSsymbols | |
\(\succeq\) | $\quad:\quad$\succeq
|
||
\(\succnapprox\) | $\quad:\quad$\succnapprox
|
$\quad$AMSsymbols | |
\(\succneqq\) | $\quad:\quad$\succneqq
|
$\quad$AMSsymbols | |
\(\succnsim\) | $\quad:\quad$\succnsim
|
$\quad$AMSsymbols | |
\(\succsim\) | $\quad:\quad$\succsim
|
$\quad$AMSsymbols | |
\(\sum\) | $\quad:\quad$\sum
|
||
\(\sup\) | $\quad:\quad$\sup
|
||
\(\supp\) | $\quad:\quad$\supp
|
$\qquad$Support | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\supset\) | $\quad:\quad$\supset
|
$\qquad$Proper Superset (deprecated) | |
\(\Supset\) | $\quad:\quad$\Supset
|
$\quad$AMSsymbols | |
\(\supseteq\) | $\quad:\quad$\supseteq
|
$\qquad$Superset ($\mathsf{Pr} \infty \mathsf{fWiki}$ preferred) | |
\(\supseteqq\) | $\quad:\quad$\supseteqq
|
$\qquad$Superset | $\quad$AMSsymbols |
\(\supsetneq\) | $\quad:\quad$\supsetneq
|
$\qquad$Proper Superset ($\mathsf{Pr} \infty \mathsf{fWiki}$ preferred) | $\quad$AMSsymbols |
\(\supsetneqq\) | $\quad:\quad$\supsetneqq
|
$\qquad$Proper Superset | $\quad$AMSsymbols |
\(\surd x\) | $\quad:\quad$\surd x
|
$\qquad$Square Root: also see \sqrt
|
|
\(\swarrow\) | $\quad:\quad$\swarrow
|
||
\(\Syl {p} {N}\) | $\quad:\quad$\Syl {p} {N}
|
$\qquad$Sylow $p$-Subgroup | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\symdif\) | $\quad:\quad$\symdif
|
$\qquad$Symmetric Difference | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
T
\(\T\) | $\quad:\quad$\T
|
$\qquad$True | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\tan\) | $\quad:\quad$\tan
|
$\qquad$Tangent | |
\(\tanh\) | $\quad:\quad$\tanh
|
$\qquad$Hyperbolic Tangent | |
\(\Tanh\) | $\quad:\quad$\Tanh
|
$\qquad$Hyperbolic Tangent | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\tau\) | $\quad:\quad$\tau
|
||
\(\tbinom a b\) | $\quad:\quad$\tbinom a b
|
$\quad$AMSmath | |
\(\TeX\) | $\quad:\quad$\TeX
|
||
\(\text a\) | $\quad:\quad$\text a
|
||
\(\textbf a\) | $\quad:\quad$\textbf a
|
||
\(\textit a\) | $\quad:\quad$\textit a
|
||
\(\textrm a\) | $\quad:\quad$\textrm a
|
||
\(\textstyle a\) | $\quad:\quad$\textstyle a
|
||
\(\tfrac a b\) | $\quad:\quad$\tfrac a b
|
$\quad$AMSmath | |
\(\therefore\) | $\quad:\quad$\therefore
|
$\quad$AMSsymbols | |
\(\Theta\) | $\quad:\quad$\Theta
|
||
\(\theta\) | $\quad:\quad$\theta
|
||
\(\thickapprox\) | $\quad:\quad$\thickapprox
|
$\quad$AMSsymbols | |
\(\thicksim\) | $\quad:\quad$\thicksim
|
$\quad$AMSsymbols | |
\(a \thinspace b\) | $\quad:\quad$a \thinspace b , a \, b
|
||
\(\tilde a\) | $\quad:\quad$\tilde a
|
||
\(\times\) | $\quad:\quad$\times
|
||
\(\tiny a\) | $\quad:\quad$\tiny a
|
||
\(\Tiny a\) | $\quad:\quad$\Tiny a
|
$\qquad$non-standard | |
\(\to\) | $\quad:\quad$\to
|
||
\(\top\) | $\quad:\quad$\top
|
||
\(\tr\) | $\quad:\quad$\tr
|
$\qquad$Trace | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\triangle\) | $\quad:\quad$\triangle
|
||
\(\triangledown\) | $\quad:\quad$\triangledown
|
$\quad$AMSsymbols | |
\(\triangleleft\) | $\quad:\quad$\triangleleft
|
||
\(\trianglelefteq\) | $\quad:\quad$\trianglelefteq
|
$\quad$AMSsymbols | |
\(\triangleq\) | $\quad:\quad$\triangleq
|
$\quad$AMSsymbols | |
\(\triangleright\) | $\quad:\quad$\triangleright
|
||
\(\trianglerighteq\) | $\quad:\quad$\trianglerighteq
|
$\quad$AMSsymbols | |
\(\TT\) | $\quad:\quad$\TT
|
$\qquad$that is: \mathcal T
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\tt a\) | $\quad:\quad$\tt a
|
||
\(\tuple {a, b, c}\) | $\quad:\quad$\tuple {a, b, c}
|
$\qquad$Ordered Tuple | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\twoheadleftarrow\) | $\quad:\quad$\twoheadleftarrow
|
$\quad$AMSsymbols | |
\(\twoheadrightarrow\) | $\quad:\quad$\twoheadrightarrow
|
$\quad$AMSsymbols |
U
\(\ulcorner\) | $\quad:\quad$\ulcorner
|
$\quad$AMSsymbols | |
\(\underbrace {abcde} \) | $\quad:\quad$\underbrace {abcde}
|
||
\(\underleftarrow {abcde} \) | $\quad:\quad$\underleftarrow {abcde}
|
||
\(\underleftrightarrow {abcde} \) | $\quad:\quad$\underleftrightarrow {abcde}
|
||
\(\underline {abcde} \) | $\quad:\quad$\underline {abcde}
|
||
\(\underrightarrow {abcde} \) | $\quad:\quad$\underrightarrow {abcde}
|
||
\(\underset {abc} {xyz} \) | $\quad:\quad$\underset {abc} {xyz}
|
||
\(\unicode{x263a}\) | $\quad:\quad$\unicode{x263a}
|
$\qquad$non-standard | $\quad$[unicode] |
\(\unlhd\) | $\quad:\quad$\unlhd
|
$\quad$AMSsymbols | |
\(\unrhd\) | $\quad:\quad$\unrhd
|
$\quad$AMSsymbols | |
\(\Uparrow\) | $\quad:\quad$\Uparrow
|
||
\(\uparrow\) | $\quad:\quad$\uparrow
|
||
\(\Updownarrow\) | $\quad:\quad$\Updownarrow
|
||
\(\updownarrow\) | $\quad:\quad$\updownarrow
|
||
\(\upharpoonleft\) | $\quad:\quad$\upharpoonleft
|
$\quad$AMSsymbols | |
\(\upharpoonright\) | $\quad:\quad$\upharpoonright
|
$\quad$AMSsymbols | |
\(\uplus\) | $\quad:\quad$\uplus
|
||
\(\upperadjoint {\mathbf J}\) | $\quad:\quad$\upperadjoint {\mathbf J}
|
$\qquad$Galois Connections | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\root 3 \uproot 2 \of x\) | $\quad:\quad$\root 3 \uproot 2 \of x
|
||
\(\Upsilon\) | $\quad:\quad$\Upsilon
|
||
\(\upsilon\) | $\quad:\quad$\upsilon
|
||
\(\upuparrows\) | $\quad:\quad$\upuparrows
|
$\quad$AMSsymbols | |
\(\UU\) | $\quad:\quad$\UU
|
$\qquad$that is: \mathcal U
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\urcorner\) | $\quad:\quad$\urcorner
|
$\quad$AMSsymbols |
V
\(\valueat {\dfrac {\delta y} {\delta x} } {x \mathop = \xi}\) | $\quad:\quad$\valueat {\dfrac {\delta y} {\delta x} } {x \mathop = \xi}
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ | |
\(\var {X}\) | $\quad:\quad$\var {X}
|
$\qquad$Variance | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\varDelta\) | $\quad:\quad$\varDelta
|
$\quad$AMSsymbols | |
\(\varepsilon\) | $\quad:\quad$\varepsilon
|
||
\(\varGamma\) | $\quad:\quad$\varGamma
|
$\quad$AMSsymbols | |
\(\varinjlim\) | $\quad:\quad$\varinjlim
|
$\quad$AMSmath | |
\(\varkappa\) | $\quad:\quad$\varkappa
|
$\quad$AMSsymbols | |
\(\varLambda\) | $\quad:\quad$\varLambda
|
$\quad$AMSsymbols | |
\(\varliminf\) | $\quad:\quad$\varliminf
|
$\quad$AMSmath | |
\(\varlimsup\) | $\quad:\quad$\varlimsup
|
$\quad$AMSmath | |
\(\varnothing\) | $\quad:\quad$\varnothing
|
$\quad$AMSsymbols | |
\(\varOmega\) | $\quad:\quad$\varOmega
|
$\quad$AMSsymbols | |
\(\varphi\) | $\quad:\quad$\varphi
|
||
\(\varPhi\) | $\quad:\quad$\varPhi
|
$\quad$AMSsymbols | |
\(\varpi\) | $\quad:\quad$\varpi
|
||
\(\varPi\) | $\quad:\quad$\varPi
|
$\quad$AMSsymbols | |
\(\varprojlim\) | $\quad:\quad$\varprojlim
|
$\quad$AMSmath | |
\(\varpropto\) | $\quad:\quad$\varpropto
|
$\quad$AMSsymbols | |
\(\varPsi\) | $\quad:\quad$\varPsi
|
$\quad$AMSsymbols | |
\(\varrho\) | $\quad:\quad$\varrho
|
||
\(\varsigma\) | $\quad:\quad$\varsigma
|
||
\(\varSigma\) | $\quad:\quad$\varSigma
|
$\quad$AMSsymbols | |
\(\varsubsetneq\) | $\quad:\quad$\varsubsetneq
|
$\quad$AMSsymbols | |
\(\varsubsetneqq\) | $\quad:\quad$\varsubsetneqq
|
$\quad$AMSsymbols | |
\(\varsupsetneq\) | $\quad:\quad$\varsupsetneq
|
$\quad$AMSsymbols | |
\(\varsupsetneqq\) | $\quad:\quad$\varsupsetneqq
|
$\quad$AMSsymbols | |
\(\vartheta\) | $\quad:\quad$\vartheta
|
||
\(\varTheta\) | $\quad:\quad$\varTheta
|
$\quad$AMSsymbols | |
\(\vartriangle\) | $\quad:\quad$\vartriangle
|
$\quad$AMSsymbols | |
\(\vartriangleleft\) | $\quad:\quad$\vartriangleleft
|
$\quad$AMSsymbols | |
\(\vartriangleright\) | $\quad:\quad$\vartriangleright
|
$\quad$AMSsymbols | |
\(\varUpsilon\) | $\quad:\quad$\varUpsilon
|
$\quad$AMSsymbols | |
\(\varXi\) | $\quad:\quad$\varXi
|
$\quad$AMSsymbols | |
\(\vdash\) | $\quad:\quad$\vdash
|
||
\(\Vdash\) | $\quad:\quad$\Vdash
|
$\quad$AMSsymbols | |
\(\vDash\) | $\quad:\quad$\vDash
|
$\quad$AMSsymbols | |
\(\vdots\) | $\quad:\quad$\vdots
|
||
\(\vec x\) | $\quad:\quad$\vec x
|
||
\(\vee\) | $\quad:\quad$\vee
|
||
\(\veebar\) | $\quad:\quad$\veebar
|
$\quad$AMSsymbols | |
\(\verb*$x^2 \sqrt y$*\) | $\quad:\quad$\verb*$x^2 \sqrt y$*
|
$\quad$[verb] | |
\(\vers \theta\) | $\quad:\quad$\vers \theta
|
$\qquad$Versed Sine | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Vert\) | $\quad:\quad$\Vert
|
||
\(\vert\) | $\quad:\quad$\vert
|
||
\(\VV\) | $\quad:\quad$\VV
|
$\qquad$that is: \mathcal V
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\Vvdash\) | $\quad:\quad$\Vvdash
|
$\quad$AMSsymbols |
W
\(\weakconv\) | $\quad:\quad$\weakconv
|
$\qquad$Weak Convergence | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\weakstarconv\) | $\quad:\quad$\weakstarconv
|
$\qquad$Weak-$*$ Convergence | $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\wedge\) | $\quad:\quad$\wedge
|
||
\(\widehat {xyz} \) | $\quad:\quad$\widehat {xyz}
|
||
\(\widetilde {xyz} \) | $\quad:\quad$\widetilde {xyz}
|
||
\(\wp\) | $\quad:\quad$\wp
|
||
\(\wr\) | $\quad:\quad$\wr
|
||
\(\WW\) | $\quad:\quad$\WW
|
$\qquad$that is: \mathcal W
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
X
\(\Xi\) | $\quad:\quad$\Xi
|
||
\(\xi\) | $\quad:\quad$\xi
|
||
\(\xleftarrow {\text {extending} }\) | $\quad:\quad$\xleftarrow {\text {extending} }
|
$\quad$AMSmath | |
\(\xrightarrow {\text {extending} }\) | $\quad:\quad$\xrightarrow {\text {extending} }
|
$\quad$AMSmath | |
\(\XX\) | $\quad:\quad$\XX
|
$\qquad$that is: \mathcal X
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
Y
\(\yen\) | $\quad:\quad$\yen
|
||
\(\YY\) | $\quad:\quad$\YY
|
$\qquad$that is: \mathcal Y
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
Z
\(\Z\) | $\quad:\quad$\Z
|
$\qquad$Set of Integers | |
\(\ZZ\) | $\quad:\quad$\ZZ
|
$\qquad$that is: \mathcal Z
|
$\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$ |
\(\zeta\) | $\quad:\quad$\zeta
|
$\mathsf{Pr} \infty \mathsf{fWiki}$ Specific
\(\AA\) | $\quad:\quad$\AA
|
$\qquad$that is: \mathcal A
|
|
\(\Add\) | $\quad:\quad$\Add
|
$\qquad$Addition as a Primitive Recursive Function | |
\(\adj {\mathbf A}\) | $\quad:\quad$\adj {\mathbf A}
|
$\qquad$Adjugate Matrix | |
\(\map \Ai {x}\) | $\quad:\quad$\map \Ai {x}
|
$\qquad$Airy Function of the First Kind | |
\(\am z\) | $\quad:\quad$\am z
|
$\qquad$Amplitude | |
\(\arccot\) | $\quad:\quad$\arccot
|
$\qquad$Arccotangent | |
\(\arccsc\) | $\quad:\quad$\arccsc
|
$\qquad$Arccosecant | |
\(\arcosh\) | $\quad:\quad$\arcosh
|
$\qquad$Area Hyperbolic Cosine | |
\(\Arcosh\) | $\quad:\quad$\Arcosh
|
$\qquad$Complex Area Hyperbolic Cosine | |
\(\arcoth\) | $\quad:\quad$\arcoth
|
$\qquad$Area Hyperbolic Cotangent | |
\(\Arcoth\) | $\quad:\quad$\Arcoth
|
$\qquad$Complex Area Hyperbolic Cotangent | |
\(\arcsch\) | $\quad:\quad$\arcsch
|
$\qquad$Area Hyperbolic Cosecant | |
\(\Arcsch\) | $\quad:\quad$\Arcsch
|
$\qquad$Complex Area Hyperbolic Cosecant | |
\(\arcsec\) | $\quad:\quad$\arcsec
|
$\qquad$Arcsecant | |
\(\arsech\) | $\quad:\quad$\arsech
|
$\qquad$Area Hyperbolic Secant | |
\(\Arsech\) | $\quad:\quad$\Arsech
|
$\qquad$Complex Area Hyperbolic Secant | |
\(\arsinh\) | $\quad:\quad$\arsinh
|
$\qquad$Area Hyperbolic Sine | |
\(\Arsinh\) | $\quad:\quad$\Arsinh
|
$\qquad$Complex Area Hyperbolic Sine | |
\(\artanh\) | $\quad:\quad$\artanh
|
$\qquad$Area Hyperbolic Tangent | |
\(\Artanh\) | $\quad:\quad$\Artanh
|
$\qquad$Complex Area Hyperbolic Tangent | |
\(\Area\) | $\quad:\quad$\Area
|
$\qquad$Area of Plane Figure | |
\(\Arg z\) | $\quad:\quad$\Arg z
|
$\qquad$Principal Argument of Complex Number | |
\(\Aut {S}\) | $\quad:\quad$\Aut {S}
|
$\qquad$Automorphism Group | |
\(\BB\) | $\quad:\quad$\BB
|
$\qquad$that is: \mathcal B
|
|
\(\Bei\) | $\quad:\quad$\Bei
|
$\qquad$Bei Function | |
\(\Ber\) | $\quad:\quad$\Ber
|
$\qquad$Ber Function | |
\(\Bernoulli {p}\) | $\quad:\quad$\Bernoulli {p}
|
$\qquad$Bernoulli Distribution | |
\(\BetaDist {\alpha} {\beta}\) | $\quad:\quad$\BetaDist {\alpha} {\beta}
|
$\qquad$Beta Distribution | |
\(\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}\) | $\quad:\quad$\bigintlimits {\map f s} {s \mathop = 0} {s \mathop = a}
|
$\qquad$Limits of Integration | |
\(\bigsize {x}\) | $\quad:\quad$\bigsize {x}
|
$\qquad$Absolute Value | |
\(\bigvalueat {\delta x} {x \mathop = x_j} \) | $\quad:\quad$\bigvalueat {\delta x} {x \mathop = x_j}
|
||
\(\Binomial {n} {p}\) | $\quad:\quad$\Binomial {n} {p}
|
$\qquad$Binomial Distribution | |
\(\braket {a} {b}\) | $\quad:\quad$\braket {a} {b}
|
$\qquad$Dirac Notation | |
\(\bsalpha\) | $\quad:\quad$\bsalpha
|
||
\(\bsbeta\) | $\quad:\quad$\bsbeta
|
||
\(\bschi\) | $\quad:\quad$\bschi
|
||
\(\bsDelta\) | $\quad:\quad$\bsDelta
|
$\qquad$a vector '$\Delta$' | |
\(\bsdelta\) | $\quad:\quad$\bsdelta
|
||
\(\bsepsilon\) | $\quad:\quad$\bsepsilon
|
||
\(\bseta\) | $\quad:\quad$\bseta
|
||
\(\bsgamma\) | $\quad:\quad$\bsgamma
|
||
\(\bsiota\) | $\quad:\quad$\bsiota
|
||
\(\bskappa\) | $\quad:\quad$\bskappa
|
||
\(\bslambda\) | $\quad:\quad$\bslambda
|
||
\(\bsmu\) | $\quad:\quad$\bsmu
|
||
\(\bsnu\) | $\quad:\quad$\bsnu
|
||
\(\bsomega\) | $\quad:\quad$\bsomega
|
||
\(\bsomicron\) | $\quad:\quad$\bsomicron
|
||
\(\bsone\) | $\quad:\quad$\bsone
|
$\qquad$vector of ones | |
\(\bsphi\) | $\quad:\quad$\bsphi
|
||
\(\bspi\) | $\quad:\quad$\bspi
|
||
\(\bspsi\) | $\quad:\quad$\bspsi
|
||
\(\bsrho\) | $\quad:\quad$\bsrho
|
||
\(\bssigma\) | $\quad:\quad$\bssigma
|
||
\(\bst\) | $\quad:\quad$\bst
|
$\qquad$a vector 't' | |
\(\bstau\) | $\quad:\quad$\bstau
|
||
\(\bstheta\) | $\quad:\quad$\bstheta
|
||
\(\bsupsilon\) | $\quad:\quad$\bsupsilon
|
||
\(\bsv\) | $\quad:\quad$\bsv
|
$\qquad$a vector 'v' | |
\(\bsw\) | $\quad:\quad$\bsw
|
$\qquad$a vector 'w' | |
\(\bsx\) | $\quad:\quad$\bsx
|
$\qquad$a vector 'x' | |
\(\bsxi\) | $\quad:\quad$\bsxi
|
||
\(\bsy\) | $\quad:\quad$\bsy
|
$\qquad$a vector 'y' | |
\(\bsz\) | $\quad:\quad$\bsz
|
$\qquad$a vector 'z' | |
\(\bszero\) | $\quad:\quad$\bszero
|
$\qquad$vector of zeros | |
\(\bszeta\) | $\quad:\quad$\bszeta
|
||
\(\map \Card {S}\) | $\quad:\quad$\map \Card {S}
|
$\qquad$Cardinality | |
\(\card {S}\) | $\quad:\quad$\card {S}
|
$\qquad$Cardinality | |
\(\Cauchy {x_0} {\gamma}\) | $\quad:\quad$\Cauchy {x_0} {\gamma}
|
$\qquad$Cauchy Distribution | |
\(\CC\) | $\quad:\quad$\CC
|
$\qquad$that is: \mathcal C
|
|
\(\Cdm {f}\) | $\quad:\quad$\Cdm {f}
|
$\qquad$Codomain of Mapping | |
\(\ceiling {11.98}\) | $\quad:\quad$\ceiling {11.98}
|
$\qquad$Ceiling Function | |
\(30 \cels\) | $\quad:\quad$30 \cels
|
$\qquad$Degrees Celsius | |
\(15 \cents\) | $\quad:\quad$15 \cents
|
$\qquad$Cent | |
\(\Char {R}\) | $\quad:\quad$\Char {R}
|
$\qquad$Characteristic of Ring, etc. | |
\(\Ci\) | $\quad:\quad$\Ci
|
$\qquad$Cosine Integral Function | |
\(\cis \theta\) | $\quad:\quad$\cis \theta
|
$\qquad$$\cos \theta + i \sin \theta$ | |
\(\map \cl {S}\) | $\quad:\quad$\map \cl {S}
|
$\qquad$Closure (Topology) | |
\(\closedint {a} {b}\) | $\quad:\quad$\closedint {a} {b}
|
$\qquad$Closed Interval | |
\(\closedrect {\mathbf a_1} {\mathbf a_2}\) | $\quad:\quad$\closedrect {\mathbf a_1} {\mathbf a_2}
|
$\qquad$Closed Rectangle | |
\(\cmod {z^2}\) | $\quad:\quad$\cmod {z^2}
|
$\qquad$Complex Modulus | |
\(\cn u\) | $\quad:\quad$\cn u
|
$\qquad$Elliptic Function | |
\(\condprob {A} {B}\) | $\quad:\quad$\condprob {A} {B}
|
$\qquad$Conditional Probability | |
\(\conjclass {x}\) | $\quad:\quad$\conjclass {x}
|
$\qquad$Conjugacy Class | |
\(\cont {f}\) | $\quad:\quad$\cont {f}
|
$\qquad$Content of Polynomial | |
\(\ContinuousUniform {a} {b}\) | $\quad:\quad$\ContinuousUniform {a} {b}
|
$\qquad$Continuous Uniform Distribution | |
\(\cosec\) | $\quad:\quad$\cosec
|
$\qquad$Cosecant (alternative form) | |
\(\Cosh\) | $\quad:\quad$\Cosh
|
$\qquad$Hyperbolic Cosine | |
\(\Coth\) | $\quad:\quad$\Coth
|
$\qquad$Hyperbolic Cotangent | |
\(\cov {X, Y}\) | $\quad:\quad$\cov {X, Y}
|
$\qquad$Covariance | |
\(\csch\) | $\quad:\quad$\csch
|
$\qquad$Hyperbolic Cosecant | |
\(\Csch\) | $\quad:\quad$\Csch
|
$\qquad$Hyperbolic Cosecant | |
\(\curl\) | $\quad:\quad$\curl
|
$\qquad$Curl Operator | |
\(\DD\) | $\quad:\quad$\DD
|
$\qquad$that is: \mathcal D
|
|
\(\dfrac {\d x} {\d y}\) | $\quad:\quad$\dfrac {\d x} {\d y}
|
$\qquad$Roman $\d$ for Derivatives | |
\(30 \degrees\) | $\quad:\quad$30 \degrees
|
$\qquad$Degrees of Angle | |
\(\diam\) | $\quad:\quad$\diam
|
$\qquad$Diameter | |
\(\Dic n\) | $\quad:\quad$\Dic n
|
$\qquad$Dicyclic Group | |
\(\DiscreteUniform {n}\) | $\quad:\quad$\DiscreteUniform {n}
|
$\qquad$Discrete Uniform Distribution | |
\(a \divides b\) | $\quad:\quad$a \divides b
|
$\qquad$Divisibility | |
\(\dn u\) | $\quad:\quad$\dn u
|
$\qquad$Elliptic Function | |
\(\Dom {f}\) | $\quad:\quad$\Dom {f}
|
$\qquad$Domain of Mapping | |
\(\dr {a}\) | $\quad:\quad$\dr {a}
|
$\qquad$Digital Root | |
\(\E\) | $\quad:\quad$\E
|
$\qquad$Elementary Charge | |
\(\EE\) | $\quad:\quad$\EE
|
$\qquad$that is: \mathcal E
|
|
\(\Ei\) | $\quad:\quad$\Ei
|
$\qquad$Exponential Integral Function | |
\(\empty\) | $\quad:\quad$\empty
|
$\qquad$Empty Set | |
\(\eqclass {x} {\RR}\) | $\quad:\quad$\eqclass {x} {\RR}
|
$\qquad$Equivalence Class | |
\(\erf\) | $\quad:\quad$\erf
|
$\qquad$Error Function | |
\(\erfc\) | $\quad:\quad$\erfc
|
$\qquad$Complementary Error Function | |
\(\expect {X}\) | $\quad:\quad$\expect {X}
|
$\qquad$Expectation | |
\(\Exponential {\beta}\) | $\quad:\quad$\Exponential {\beta}
|
$\qquad$Exponential Distribution | |
\(\Ext {\gamma}\) | $\quad:\quad$\Ext {\gamma}
|
$\qquad$Exterior | |
\(\F\) | $\quad:\quad$\F
|
$\qquad$False | |
\(30 \fahr\) | $\quad:\quad$30 \fahr
|
$\qquad$Degrees Fahrenheit | |
\(\family {S_i}\) | $\quad:\quad$\family {S_i}
|
$\qquad$Indexed Family | |
\(\FF\) | $\quad:\quad$\FF
|
$\qquad$that is: \mathcal F
|
|
\(\Field {\RR} \) | $\quad:\quad$\Field {\RR}
|
||
\(\Fix {\pi}\) | $\quad:\quad$\Fix {\pi}
|
$\qquad$Set of Fixed Elements | |
\(\floor {11.98}\) | $\quad:\quad$\floor {11.98}
|
$\qquad$Floor Function | |
\(\fractpart {x}\) | $\quad:\quad$\fractpart {x}
|
$\qquad$Fractional Part | |
\(\map \Frob {R}\) | $\quad:\quad$\map \Frob {R}
|
$\qquad$Frobenius Endomorphism | |
\(\Gal {S}\) | $\quad:\quad$\Gal {S}
|
$\qquad$Galois Group | |
\(\Gaussian {\mu} {\sigma^2}\) | $\quad:\quad$\Gaussian {\mu} {\sigma^2}
|
$\qquad$Normal Distribution | |
\(\gen {S}\) | $\quad:\quad$\gen {S}
|
$\qquad$Generator | |
\(\Geometric {p}\) | $\quad:\quad$\Geometric {p}
|
$\qquad$Geometric Distribution | |
\(\GF\) | $\quad:\quad$\GF
|
$\qquad$Galois Field | |
\(\GG\) | $\quad:\quad$\GG
|
$\qquad$that is: \mathcal G
|
|
\(\GL {n, \R}\) | $\quad:\quad$\GL {n, \R}
|
$\qquad$General Linear Group | |
\(\grad {p}\) | $\quad:\quad$\grad {p}
|
$\qquad$Gradient | |
\(\harm {r} {z}\) | $\quad:\quad$\harm {r} {z}
|
$\qquad$General Harmonic Numbers | |
\(\hav \theta\) | $\quad:\quad$\hav \theta
|
$\qquad$Haversine | |
\(\hcf\) | $\quad:\quad$\hcf
|
$\qquad$Highest Common Factor | |
\(\H\) | $\quad:\quad$\H
|
$\qquad$Set of Quaternions | |
\(\HH\) | $\quad:\quad$\HH
|
$\qquad$Hilbert Space | |
\(\hointl {a} {b}\) | $\quad:\quad$\hointl {a} {b}
|
$\qquad$Left Half-Open Interval | |
\(\hointr {a} {b}\) | $\quad:\quad$\hointr {a} {b}
|
$\qquad$Right Half-Open Interval | |
\(\horectl {\mathbf a} {\mathbf b}\) | $\quad:\quad$\horectl {\mathbf a} {\mathbf b}
|
$\qquad$Half-Open Rectangle (on the left) | |
\(\horectr {\mathbf c} {\mathbf d}\) | $\quad:\quad$\horectr {\mathbf c} {\mathbf d}
|
$\qquad$Half-Open Rectangle (on the right) | |
\(\ideal {a}\) | $\quad:\quad$\ideal {a}
|
$\qquad$Ideal of Ring | |
\(\II\) | $\quad:\quad$\II
|
$\qquad$that is: \mathcal I
|
|
\(\map \Im z\) | $\quad:\quad$\map \Im z
|
$\qquad$Imaginary Part | |
\(\Img {f}\) | $\quad:\quad$\Img {f}
|
$\qquad$Image of Mapping | |
\(\index {G} {H}\) | $\quad:\quad$\index {G} {H}
|
$\qquad$Index of Subgroup | |
\(\inj\) | $\quad:\quad$\inj
|
$\qquad$Canonical Injection | |
\(\Inn {S}\) | $\quad:\quad$\Inn {S}
|
$\qquad$Group of Inner Automorphisms | |
\(\innerprod {x} {y}\) | $\quad:\quad$\innerprod {x} {y}
|
$\qquad$Inner Product | |
\(\Int {\gamma}\) | $\quad:\quad$\Int {\gamma}
|
$\qquad$Interior | |
\(\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}\) | $\quad:\quad$\intlimits {\dfrac {\map f s} s} {s \mathop = 1} {s \mathop = a}
|
$\qquad$Limits of Integration | |
\(\inv {f} {x}\) | $\quad:\quad$\inv {f} {x}
|
$\qquad$Inverse Mapping | |
\(\invlaptrans {F}\) | $\quad:\quad$\invlaptrans {F}
|
$\qquad$Inverse Laplace Transform | |
\(\JJ\) | $\quad:\quad$\JJ
|
$\qquad$that is: \mathcal J
|
|
\(\Kei\) | $\quad:\quad$\Kei
|
$\qquad$Kei Function | |
\(\Ker\) | $\quad:\quad$\Ker
|
$\qquad$Ker Function | |
\(\KK\) | $\quad:\quad$\KK
|
$\qquad$that is: \mathcal K
|
|
\(\laptrans {f}\) | $\quad:\quad$\laptrans {f}
|
$\qquad$Laplace Transform | |
\(\lcm \set {x, y, z}\) | $\quad:\quad$\lcm \set {x, y, z}
|
$\qquad$Lowest Common Multiple | |
\(\leadstoandfrom\) | $\quad:\quad$\leadstoandfrom
|
||
\(\leftset {a, b, c}\) | $\quad:\quad$\leftset {a, b, c}
|
$\qquad$Conventional set notation (left only) | |
\(\leftparen {a + b + c}\) | $\quad:\quad$\leftparen {a + b + c}
|
$\qquad$Parenthesis (left only) | |
\(\map \len {AB}\) | $\quad:\quad$\map \len {AB}
|
$\qquad$Length Function: various | |
\(\Li\) | $\quad:\quad$\Li
|
$\qquad$Eulerian Logarithmic Integral | |
\(\li\) | $\quad:\quad$\li
|
$\qquad$Logarithmic Integral | |
\(\LL\) | $\quad:\quad$\LL
|
$\qquad$that is: \mathcal L
|
|
\(\Ln\) | $\quad:\quad$\Ln
|
$\qquad$Principal Branch of Complex Natural Logarithm | |
\(\Log\) | $\quad:\quad$\Log
|
$\qquad$Principal Branch of Complex Natural Logarithm | |
\(\loweradjoint {\mathbf J}\) | $\quad:\quad$\loweradjoint {\mathbf J}
|
$\qquad$Galois Connections | |
\(\map {f} {x}\) | $\quad:\quad$\map {f} {x}
|
$\qquad$Mapping or Function | |
\(\meta {metasymbol}\) | $\quad:\quad$\meta {metasymbol}
|
$\qquad$Metasymbol | |
\(27 \minutes\) | $\quad:\quad$27 \minutes
|
$\qquad$Minutes of Angle or Minutes of Time | |
\(\MM\) | $\quad:\quad$\MM
|
$\qquad$that is: \mathcal M
|
|
\(\Mult\) | $\quad:\quad$\Mult
|
$\qquad$Multiplication as a Primitive Recursive Function | |
\(\multiset {a, b, c}\) | $\quad:\quad$\multiset {a, b, c}
|
$\qquad$Multiset | |
\(\map \nec P\) | $\quad:\quad$\map \nec P
|
$\qquad$it is necessary that $P$ | |
\(\NegativeBinomial {n} {p}\) | $\quad:\quad$\NegativeBinomial {n} {p}
|
$\qquad$Negative Binomial Distribution | |
\(\Nil {R}\) | $\quad:\quad$\Nil {R}
|
$\qquad$Nilradical of Ring | |
\(\nint {11.98}\) | $\quad:\quad$\nint {11.98}
|
$\qquad$Nearest Integer Function | |
\(\NN\) | $\quad:\quad$\NN
|
$\qquad$that is: \mathcal N
|
|
\(\norm {z^2}\) | $\quad:\quad$\norm {z^2}
|
$\qquad$Norm | |
\(\O\) | $\quad:\quad$\O
|
$\qquad$Empty Set | |
\(\OO\) | $\quad:\quad$\OO
|
$\qquad$that is: \mathcal O
|
|
\(\oo\) | $\quad:\quad$\oo
|
$\qquad$that is: \mathcal o
|
|
\(\oldpence\) | $\quad:\quad$\oldpence
|
$\qquad$old pence | |
\(\On\) | $\quad:\quad$\On
|
$\qquad$Class of All Ordinals | |
\(\openint {a} {b}\) | $\quad:\quad$\openint {a} {b}
|
$\qquad$Open Interval | |
\(\openrect {\mathbf a_1} {\mathbf a_2}\) | $\quad:\quad$\openrect {\mathbf a_1} {\mathbf a_2}
|
$\qquad$Open Rectangle | |
\(\Orb S\) | $\quad:\quad$\Orb S
|
$\qquad$Orbit | |
\(\Ord {S}\) | $\quad:\quad$\Ord {S}
|
$\qquad$$S$ is an Ordinal | |
\(\order {G}\) | $\quad:\quad$\order {G}
|
$\qquad$Order of Structure, and so on | |
\(\ot\) | $\quad:\quad$\ot
|
$\qquad$Order Type | |
\(\Out {G}\) | $\quad:\quad$\Out {G}
|
$\qquad$Group of Outer Automorphisms | |
\(\paren {a + b + c}\) | $\quad:\quad$\paren {a + b + c}
|
$\qquad$Parenthesis | |
\(\ph z\) | $\quad:\quad$\ph z
|
$\qquad$Phase | |
\(\Poisson {\lambda}\) | $\quad:\quad$\Poisson {\lambda}
|
$\qquad$Poisson Distribution | |
\(\polar {r, \theta}\) | $\quad:\quad$\polar {r, \theta}
|
$\qquad$Polar Form of Complex Number | |
\(\map \pos P\) | $\quad:\quad$\map \pos P
|
$\qquad$it is possible that $P$ | |
\(\pounds\) | $\quad:\quad$\pounds
|
$\qquad$Pound Sterling | |
\(\powerset {S}\) | $\quad:\quad$\powerset {S}
|
$\qquad$Power Set | |
\(\PP\) | $\quad:\quad$\PP
|
$\qquad$that is: \mathcal P
|
|
\(\map {\pr_j} {F}\) | $\quad:\quad$\map {\pr_j} {F}
|
$\qquad$Projection | |
\(\Preimg {f}\) | $\quad:\quad$\Preimg {f}
|
$\qquad$Preimage of Mapping | |
\(\map {\proj_\mathbf v} {\mathbf u}\) | $\quad:\quad$\map {\proj_\mathbf v} {\mathbf u}
|
$\qquad$Vector Projection | |
\(\PV\) | $\quad:\quad$\PV
|
$\qquad$Cauchy Principal Value | |
\(\QQ\) | $\quad:\quad$\QQ
|
$\qquad$that is: \mathcal Q
|
|
\(\radians\) | $\quad:\quad$\radians
|
$\qquad$Radian | |
\(\Rad\) | $\quad:\quad$\Rad
|
$\qquad$Radical of Ideal of Ring | |
\(\ds \int \map f x \rd x\) | $\quad:\quad$\ds \int \map f x \rd x
|
$\qquad$Roman $\d$ for use in Integrals | |
\(\rD\) | $\quad:\quad$\rD
|
$\qquad$Differential Operator | |
\(y \rdelta x\) | $\quad:\quad$y \rdelta x
|
$\qquad$$\delta$ operator for use in sums | |
\(30 \rankine\) | $\quad:\quad$30 \rankine
|
$\qquad$Degrees Rankine | |
\(\map \Re z\) | $\quad:\quad$\map \Re z
|
$\qquad$Real Part | |
\(\relcomp {S} {A}\) | $\quad:\quad$\relcomp {S} {A}
|
$\qquad$Relative Complement | |
\(\rem\) | $\quad:\quad$\rem
|
$\qquad$Remainder | |
\(\Res {f} {z_0}\) | $\quad:\quad$\Res {f} {z_0}
|
$\qquad$Residue | |
\(\rightparen {a + b + c}\) | $\quad:\quad$\rightparen {a + b + c}
|
$\qquad$Parenthesis (right only) | |
\(\rightset {a, b, c}\) | $\quad:\quad$\rightset {a, b, c}
|
$\qquad$Conventional set notation (right only) | |
\(\Rng {f}\) | $\quad:\quad$\Rng {f}
|
$\qquad$Range of Mapping | |
\(\RR\) | $\quad:\quad$\RR
|
$\qquad$that is: \mathcal R
|
|
\(\sech\) | $\quad:\quad$\sech
|
$\qquad$Hyperbolic Secant | |
\(\Sech\) | $\quad:\quad$\Sech
|
$\qquad$Hyperbolic Secant | |
\(53 \seconds\) | $\quad:\quad$53 \seconds
|
$\qquad$Seconds of Angle or Seconds of Time | |
\(\sequence {a_n}\) | $\quad:\quad$\sequence {a_n}
|
$\qquad$Sequence | |
\(\set {a, b, c}\) | $\quad:\quad$\set {a, b, c}
|
$\qquad$Conventional set notation | |
\(\ShiftedGeometric {p}\) | $\quad:\quad$\ShiftedGeometric {p}
|
$\qquad$Shifted Geometric Distribution | |
\(\shillings\) | $\quad:\quad$\shillings
|
$\qquad$shillings | |
\(\Si\) | $\quad:\quad$\Si
|
$\qquad$Sine Integral Function | |
\(\Sinh\) | $\quad:\quad$\Sinh
|
$\qquad$Hyperbolic Sine | |
\(\size {x}\) | $\quad:\quad$\size {x}
|
$\qquad$Absolute Value, and so on | |
\(\SL {n, \R}\) | $\quad:\quad$\SL {n, \R}
|
$\qquad$Special Linear Group | |
\(\sn u\) | $\quad:\quad$\sn u
|
$\qquad$Elliptic Function | |
\(\span\) | $\quad:\quad$\span
|
$\qquad$Linear Span | |
\(\Spec {R}\) | $\quad:\quad$\Spec {R}
|
$\qquad$Spectrum of Ring | |
\(\sqbrk {a} \) | $\quad:\quad$\sqbrk {a}
|
||
\(\SS\) | $\quad:\quad$\SS
|
$\qquad$that is: \mathcal S
|
|
\(\Stab x\) | $\quad:\quad$\Stab x
|
$\qquad$Stabilizer | |
\(\stratgame {N} {A_i} {\succsim_i}\) | $\quad:\quad$\stratgame {N} {A_i} {\succsim_i}
|
$\qquad$Strategic Game | |
\(\struct {G, \circ}\) | $\quad:\quad$\struct {G, \circ}
|
$\qquad$Algebraic Structure | |
\(\StudentT {k}\) | $\quad:\quad$\StudentT {k}
|
$\qquad$Student's t-Distribution | |
\(\SU {n}\) | $\quad:\quad$\SU {n}
|
$\qquad$Unimodular Unitary Group | |
\(\Succ\) | $\quad:\quad$\Succ
|
$\qquad$Successor Function | |
\(\supp\) | $\quad:\quad$\supp
|
$\qquad$Support | |
\(\Syl {p} {N}\) | $\quad:\quad$\Syl {p} {N}
|
$\qquad$Sylow $p$-Subgroup | |
\(\symdif\) | $\quad:\quad$\symdif
|
$\qquad$Symmetric Difference | |
\(\T\) | $\quad:\quad$\T
|
$\qquad$True | |
\(\Tanh\) | $\quad:\quad$\Tanh
|
$\qquad$Hyperbolic Tangent | |
\(\tr\) | $\quad:\quad$\tr
|
$\qquad$Trace | |
\(\TT\) | $\quad:\quad$\TT
|
$\qquad$that is: \mathcal T
|
|
\(\tuple {a, b, c}\) | $\quad:\quad$\tuple {a, b, c}
|
$\qquad$Ordered Tuple | |
\(\upperadjoint {\mathbf J}\) | $\quad:\quad$\upperadjoint {\mathbf J}
|
$\qquad$Galois Connections | |
\(\U\) | $\quad:\quad$\U
|
$\qquad$Undetermined | |
\(\UU\) | $\quad:\quad$\UU
|
$\qquad$that is: \mathcal U
|
|
\(\valueat {\dfrac {\delta y} {\delta x} } {x \mathop = \xi} \) | $\quad:\quad$\valueat {\dfrac {\delta y} {\delta x} } {x \mathop = \xi}
|
||
\(\var {X}\) | $\quad:\quad$\var {X}
|
$\qquad$Variance | |
\(\vers \theta\) | $\quad:\quad$\vers \theta
|
$\qquad$Versed Sine | |
\(\VV\) | $\quad:\quad$\VV
|
$\qquad$that is: \mathcal V
|
|
\(\weakconv\) | $\quad:\quad$\weakconv
|
$\qquad$Weak Convergence | |
\(\weakstarconv\) | $\quad:\quad$\weakstarconv
|
$\qquad$Weak-$*$ Convergence | |
\(\WW\) | $\quad:\quad$\WW
|
$\qquad$that is: \mathcal W
|
|
\(\XX\) | $\quad:\quad$\XX
|
$\qquad$that is: \mathcal X
|
|
\(\YY\) | $\quad:\quad$\YY
|
$\qquad$that is: \mathcal Y
|
|
\(\ZZ\) | $\quad:\quad$\ZZ
|
$\qquad$that is: \mathcal Z
|