Symbols:Real Analysis
Symbols used in Real Analysis
Convolution Integral
- $\map f t * \map g t$
Let $f$ and $g$ be real functions which are integrable.
The convolution integral of $f$ and $g$ is defined as:
- $\ds \map f t * \map g t := \int_{-\infty}^\infty \map f u \map g {t - u} \rd u$
The $\LaTeX$ code for \(\map f t * \map g t\) is \map f t * \map g t
.
Convolution of Real Sequences
- $\sequence {f_i} * \sequence {g_i}$
Let $\sequence f$ and $\sequence g$ be real sequences.
The convolution of $f$ and $g$ is defined as:
- $\ds \sequence {f_i} * \sequence {g_i} := \sum_{j \mathop = 0}^i f_j g_{i - j}$
The $\LaTeX$ code for \(\sequence {f_i} * \sequence {g_i}\) is \sequence {f_i} * \sequence {g_i}
.
Cross-Correlation Integral
- $\map f t \star \map g t$
The cross-correlation of $f$ and $g$ is defined as:
- $\ds \map f t \star \map g t := \int_{-\infty}^\infty \map f u \map g {t + u} \rd u$
The $\LaTeX$ code for \(\map f t \star \map g t\) is \map f t \star \map g t
.
Limit
- $\to$
$\map f x$ tends to the limit $L$ as $x$ tends to $c$, is denoted:
- $\map f x \to L$ as $x \to c$
or
- $\ds \lim_{x \mathop \to c} \map f x = L$
The latter is voiced:
- the limit of $\map f x$ as $x$ tends to $c$.
The $\LaTeX$ code for \(\map f x \to L\) is \map f x \to L
.
The $\LaTeX$ code for \(\ds \lim_{x \mathop \to c} \map f x\) is \ds \lim_{x \mathop \to c} \map f x
.
Limit from the Left
Notations that may be encountered for the limit from the left:
- $\ds \lim_{x \mathop \to b^-} \map f x$
- $\map f {b^-}$ or $\map f {b -}$
- $\map f {b - 0}$
- $\ds \lim_{x \mathop \uparrow b} \map f x$
- $\ds \lim_{x \mathop \nearrow b} \map f x$
The $\LaTeX$ code for \(\ds \lim_{x \mathop \to b^-} \map f x\) is \ds \lim_{x \mathop \to b^-} \map f x
.
The $\LaTeX$ code for \(\map f {b^-}\) is \map f {b^-}
.
The $\LaTeX$ code for \(\map f {b -}\) is \map f {b -}
.
The $\LaTeX$ code for \($\map f {b - 0}\) is $\map f {b - 0}
.
The $\LaTeX$ code for \(\ds \lim_{x \mathop \uparrow b} \map f x\) is \ds \lim_{x \mathop \uparrow b} \map f x
.
The $\LaTeX$ code for \(\ds \lim_{x \mathop \nearrow b} \map f x\) is \ds \lim_{x \mathop \nearrow b} \map f x
.
Limit from the Right
Notations that may be encountered for the limit from the right:
- $\ds \lim_{x \mathop \to a^+} \map f x$
- $\map f {a^+}$ or $\map f {a +}$
- $\map f {a + 0}$
- $\ds \lim_{x \mathop \downarrow a} \map f x$
- $\ds \lim_{x \mathop \searrow a} \map f x$
The $\LaTeX$ code for \(\ds \lim_{x \mathop \to a^+} \map f x\) is \ds \lim_{x \mathop \to a^+} \map f x
.
The $\LaTeX$ code for \(\map f {a^+}\) is \map f {a^+}
.
The $\LaTeX$ code for \(\map f {a +}\) is \map f {a +}
.
The $\LaTeX$ code for \(\map f {a + 0}\) is \map f {a + 0}
.
The $\LaTeX$ code for \(\ds \lim_{x \mathop \downarrow a} \map f x\) is \ds \lim_{x \mathop \downarrow a} \map f x
.
The $\LaTeX$ code for \(\ds \lim_{x \mathop \searrow a} \map f x\) is \ds \lim_{x \mathop \searrow a} \map f x
.
Symbols commonly used in both Real Analysis and Number Theory
Ceiling
- $\ceiling x$
The ceiling function of $x$: the smallest integer greater than or equal to $x$.
The $\LaTeX$ code for \(\ceiling x\) is \ceiling x
.
Floor
- $\floor x$
The floor function of $x$: for $x \in \R$, the greatest integer less than or equal to $x$.
The $\LaTeX$ code for \(\floor x\) is \floor x
.
Nearest Integer
- $\nint x$
The nearest integer function is defined as:
- $\forall x \in \R: \nint x = \begin {cases} \floor {x + \dfrac 1 2} & : x \notin 2 \Z + \dfrac 1 2 \\ x - \dfrac 1 2 & : x \in 2 \Z + \dfrac 1 2 \end{cases}$
where $\floor x$ is the floor function.
The $\LaTeX$ code for \(\nint x\) is \nint x
.
Fractional Part
- $\fractpart x$
Let $x \in \R$ be a real number.
Let $\floor x$ be the floor function of $x$.
The fractional part of $x$ is the difference:
- $\fractpart x := x - \floor x$
The $\LaTeX$ code for \(\fractpart x\) is \fractpart x
.