Symbols:Real Analysis

From ProofWiki
Jump to navigation Jump to search

Symbols used in Real Analysis

Convolution Integral

$\map f t * \map g t$


Let $f$ and $g$ be real functions which are integrable.

The convolution integral of $f$ and $g$ is defined as:

$\displaystyle \map f t * \map g t := \int_{-\infty}^\infty \map f u \map g {t - u} \rd u$


The $\LaTeX$ code for \(\map f t * \map g t\) is \map f t * \map g t .


Convolution of Real Sequences

$\sequence {f_i} * \sequence {g_i}$


Let $\sequence f$ and $\sequence g$ be real sequences.

The convolution of $f$ and $g$ is defined as:

$\displaystyle \sequence {f_i} * \sequence {g_i} := \sum_{j \mathop \in \Z_{\ge 0} } f_i g_{i - j}$


The $\LaTeX$ code for \(\sequence {f_i} * \sequence {g_i}\) is \sequence {f_i} * \sequence {g_i} .


Cross-Correlation Integral

$\map f t \star \map g t$


The cross-correlation of $f$ and $g$ is defined as:

$\displaystyle \map f t \star \map g t := \int_{-\infty}^\infty \map f u \map g {t + u} \rd u$


The $\LaTeX$ code for \(\map f t \star \map g t\) is \map f t \star \map g t .