Triangle Inequality/Complex Numbers/Proof 2
Jump to navigation
Jump to search
Theorem
Let $z_1, z_2 \in \C$ be complex numbers.
Let $\cmod z$ denote the modulus of $z$.
Then:
- $\cmod {z_1 + z_2} \le \cmod {z_1} + \cmod {z_2}$
Proof
Let $z_1 = a_1 + i a_2, z_2 = b_1 + i b_2$.
\(\ds \cmod {z_1 + z_2}\) | \(\le\) | \(\ds \cmod {z_1} + \cmod {z_2}\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \paren {\paren {a_1 + b_1}^2 + \paren {a_2 + b_2}^2}^{\frac 1 2}\) | \(\le\) | \(\ds \paren { {a_1}^2 + {a_2}^2}^{\frac 1 2} + \paren { {b_1}^2 + {b_2}^2}^{\frac 1 2}\) | Definition of Complex Modulus | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \paren {a_1 + b_1}^2 + \paren {a_2 + b_2}^2\) | \(\le\) | \(\ds {a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2 + 2 \paren { {a_1}^2 + {a_2}^2}^{\frac 1 2} \paren { {b_1}^2 + {b_2}^2}^{\frac 1 2}\) | squaring both sides | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds {a_1}^2 + 2 a_1 b_1 + {b_1}^2 + {a_2}^2 + 2 a_2 b_2 + {b_2}^2\) | \(\le\) | \(\ds {a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2 + 2 \paren { {a_1}^2 + {a_2}^2}^{\frac 1 2} \paren { {b_1}^2 + {b_2}^2}^{\frac 1 2}\) | multiplying out | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds a_1 b_1 + a_2 b_2\) | \(\le\) | \(\ds \paren { {a_1}^2 + {a_2}^2}^{\frac 1 2} \paren { {b_1}^2 + {b_2}^2}^{\frac 1 2}\) | simplifying | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \paren {a_1 b_1 + a_2 b_2}^2\) | \(\le\) | \(\ds \paren { {a_1}^2 + {a_2}^2} \paren { {b_1}^2 + {b_2}^2}\) | Cauchy's Inequality | ||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds {a_1}^2 {b_1}^2 + 2 a_1 b_1 a_2 b_2 + {a_2}^2 {b_2}^2\) | \(\le\) | \(\ds {a_1}^2 {b_1}^2 + {a_2}^2 {b_2}^2 + {a_1}^2 {b_2}^2 + {a_2}^2 {b_1}^2\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds 2 a_1 b_1 a_2 b_2\) | \(\le\) | \(\ds {a_1}^2 {b_2}^2 + {a_2}^2 {b_1}^2\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \paren {a_1 b_2}^2 - 2 \paren {a_1 b_2} \paren {a_2 b_1} + \paren {a_2 b_1}^2\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \paren {a_1 b_2 - a_2 b_1}^2\) |
The final statement is a tautology, and all implications are reversible.
Hence the result.
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Solved Problems: Graphical Representations of Complex Numbers. Vectors: $7 \ \text{(a)}$