Triangle Inequality/Real Numbers/Proof 5

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \R$ be real numbers.

Let $\size x$ denote the absolute value of $x$.


Then:

$\size {x + y} \le \size x + \size y$


Proof

From Negative of Absolute Value, it is sufficient to prove that:

$\size x + \size y \ge x + y$

and:

$\size x + \size y \ge -\paren {x + y}$


By definition of absolute value:

$x \le \size x$

and:

$y \le \size y$

Then:

$x + y \le \size x + \size y$


We also have that:

\(\ds -x\) \(\le\) \(\ds \size {-x}\)
\(\ds \) \(=\) \(\ds \size x\) Absolute Value of Negative
\(\ds -y\) \(\le\) \(\ds \size {-y}\)
\(\ds \) \(=\) \(\ds \size y\) Absolute Value of Negative
\(\ds \leadsto \ \ \) \(\ds -\paren {x + y}\) \(=\) \(\ds \paren {-x} + \paren {-y}\)
\(\ds \) \(\le\) \(\ds \size x + \size y\)

Hence the result.

$\blacksquare$