Negative of Absolute Value
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a real number.
Let $\size x$ denote the absolute value of $x$.
Then:
- $-\size x \le x \le \size x$
Corollary 1
- $\size x < y \iff -y < x < y$
Corollary 2
- $\size x \le y \iff -y \le x \le y$
that is:
- $\size x \le y \iff \begin {cases} x & \le y \\ -x & \le y \end {cases}$
Corollary 3
Let $y \in \R_{\ge 0}$.
Let $z \in \R$.
Then:
- $\size {x - z} < y \iff z - y < x < z + y$
Proof
Either $x \ge 0$ or $x < 0$.
- If $x \ge 0$, then:
- $-\size x \le 0 \le x = \size x$
- If $x < 0$, then:
- $-\size x = x < 0 < \size x$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.15$