Universal Property for Simple Field Extensions
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $F / K$ be a field extension.
Let $\alpha \in F$ be an algebraic over $K$.
Let $\mu_\alpha$ be the minimal polynomial over $\alpha$ over $K$.
Let $\psi : K \left({\alpha}\right) \to L$ be a homomorphism.
Let $\phi = \psi \restriction_K$.
Let $\overline \phi: K \left[{X}\right] \to L \left[{X}\right]$ be the Induced Homomorphism of Polynomial Forms.
Then $\psi\left({\alpha}\right)$ is a root of $\overline \phi \left({\mu_\alpha}\right)$ in $L$.
Conversely let $L$ be a field.
Let $\phi: K \to L$ be a homomorphism.
Let $\beta$ be a root of $\overline \phi \left({\mu_\alpha}\right)$ in $L$.
Then there exists a unique field homomorphism $\psi : K \left({\alpha}\right) \to L$ extending $\phi$ that sends $\alpha$ to $\beta$.
Proof
Let $\psi: K \left({\alpha}\right) \to L$ be a homomorphism.
Let $\phi = \psi \big|_K$.
Let $\overline \phi: K \left[{X}\right] \to L \left[{X}\right]$ be the Induced Homomorphism of Polynomial Forms.
For any $f = a_0 + \dotsb + a_n X^n \in K \left[{X}\right]$ we have:
\(\ds \psi \left({f \left({\alpha}\right)}\right)\) | \(=\) | \(\ds \psi \left({a_0 + \cdots + a_n \alpha^n}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \phi \left({a_0}\right) + \cdots + \phi \left({a_n}\right) \psi \left({\alpha}\right)^n\) | by the homomorphism property, and the fact that $\phi = \psi \big\vert_K$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline \phi \left({f}\right) (\psi\left({\alpha}\right))\) |
Since $\mu_\alpha \left({\alpha}\right) = 0$ and a Ring Homomorphism Preserves Zero, the above yields:
- $\overline \phi \left({f}\right) \left({\psi \left({\alpha}\right)}\right) = 0$
as required.
$\Box$
Conversely let $L$ be a field.
Let $\phi: K \to L$ be a homomorphism.
Let $\beta$ be a root of $\overline \phi \left({\mu_\alpha}\right)$ in $L$.
By Structure of Simple Algebraic Field Extension, there exists a unique isomorphism:
- $\Delta: K \left[{\alpha}\right] \to K \left[{X}\right] / \langle \mu_\alpha \rangle$
such that:
- $\Delta \left({\alpha}\right) = X + \left\langle{\mu_\alpha}\right\rangle$
and:
- $\Delta \big|_K$ is the identity mapping.
By Universal Property of Polynomial Ring there exists a unique homomorphism:
- $\chi: K \left[{X}\right] \to L$
such that:
- $\chi \left({X}\right) = \beta$
and:
- $\chi \big|_K = \phi$
By Universal Property of Quotient Ring there exists a unique homomorphism:
- $\psi: K \left[{X}\right] / \left\langle{\mu_\alpha}\right\rangle \to L$
such that:
- $\chi = \psi \circ \pi$
So we have the following diagram:
- $\begin{xy}\xymatrix@L+2mu@+1em {
K \left[{X}\right] \ar[r]^*{\pi} \ar@{-->}[rd]_*{\exists ! \chi}
&
\dfrac {K \left[{X}\right]} {\left\langle{\mu_\alpha}\right\rangle} \ar@{-->}[d]^*{\exists ! \psi} \ar[r]^*{\Delta}
&
K \left[{\alpha}\right]
\\ &
L
& }\end{xy}$
Now we have:
- $\chi \left({X}\right) = \beta$
and:
- $\pi \left({X}\right) = X + \left\langle{\mu_\alpha}\right\rangle$
Therefore, because:
- $\chi = \psi \circ \pi$
we have:
- $\psi \left({X + \left\langle{\mu_\alpha}\right\rangle}\right) = \beta$
Also:
- $\Delta^{-1} \left({\alpha}\right) = X + \left\langle{\mu_\alpha}\right\rangle$
so by the above:
- $\psi \circ \Delta^{-1}\left({ \alpha }\right) = \beta$
- $\psi \circ \Delta^{-1} \big|_K = \psi\big|_K = \phi$
- the choice of $\Delta, \psi$ is unique.
$\blacksquare$