User:Leigh.Samphier/Topology/Definition:Complete Lattice Homomorphism

From ProofWiki
Jump to navigation Jump to search

Definition

Let $L_1 = \struct {S_1, \preceq_1}$ and $L_2 = \struct {S_2, \preceq_2}$ be complete lattices.

Let $\phi: S_1 \to S_2$ be a mapping between the underlying sets of $L_1$ and $L_2$.


Then:

$\phi$ is a complete lattice homomorphism from $L_1$ to $L_2$, denoted $\phi: L_1 \to L_2$

if and only if:

$\phi$ satisfies the complete lattice homomorphism axioms:
\((1)\)   $:$   arbitrary join preserving      \(\ds \forall A \subseteq S_1:\)    \(\ds \map \phi {\sup A} \)   \(\ds = \)   \(\ds \sup \set{\map \phi x : x \in A} \)      
\((2)\)   $:$   arbitrary meet preserving      \(\ds \forall A \subseteq S_1:\)    \(\ds \map \phi {\inf A} \)   \(\ds = \)   \(\ds \inf \set{\map \phi x : x \in A} \)      


Also see

  • Results about complete lattice homomorphisms can be found here.


Sources