User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Locales

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf{Loc}$ denote the category of locales.

Let $\mathbf{KCRegLoc}$ denote the category of compact completely regular locales.


Let $\tuple{\beta, \iota, \alpha}$ be an adjunction of $\mathbf{KCRegLoc}$ and $\mathbf{Loc}$ where:

$\beta: \mathbf{Loc} \to \mathbf{KCRegLoc}$ denotes a functor
$\iota: \mathbf{KCRegLoc} \to \mathbf{Loc}$ denotes the inclusion functor


Let $\eta:\operatorname{id}_{\mathbf{Loc}} \to \iota \beta$ be the unit of the adjunction $\tuple{\beta, \iota, \alpha}$ where:

$\operatorname{id}_{\mathbf{Loc}}$ denotes the identity functor on $\mathbf{Loc}$


For any $A \in \mathbf{Loc}$:

$\eta_A: A \to \beta A$ is called a Stone-Čech Compactification of $A$.


Also see


Sources

Johnstone