User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Locales
Jump to navigation
Jump to search
Definition
Let $\mathbf{Loc}$ denote the category of locales.
Let $\mathbf{KCRegLoc}$ denote the category of compact completely regular locales.
Let $\tuple{\beta, \iota, \alpha}$ be an adjunction of $\mathbf{KCRegLoc}$ and $\mathbf{Loc}$ where:
- $\beta: \mathbf{Loc} \to \mathbf{KCRegLoc}$ denotes a functor
- $\iota: \mathbf{KCRegLoc} \to \mathbf{Loc}$ denotes the inclusion functor
Let $\eta:\operatorname{id}_{\mathbf{Loc}} \to \iota \beta$ be the unit of the adjunction $\tuple{\beta, \iota, \alpha}$ where:
- $\operatorname{id}_{\mathbf{Loc}}$ denotes the identity functor on $\mathbf{Loc}$
For any $A \in \mathbf{Loc}$:
- $\eta_A: A \to \beta A$ is called a Stone-Čech Compactification of $A$.
Also see
Sources
Johnstone