User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification
Definition
Locale
Let $\mathbf{Loc}$ denote the category of locales.
Let $\mathbf{KCRegLoc}$ denote the category of compact completely regular locales.
Let $\tuple{\beta, \iota, \alpha}$ be an adjunction of $\mathbf{KCRegLoc}$ and $\mathbf{Loc}$ where:
- $\beta: \mathbf{Loc} \to \mathbf{KCRegLoc}$ denotes a functor
- $\iota: \mathbf{KCRegLoc} \to \mathbf{Loc}$ denotes the inclusion functor
Let $\eta:\operatorname{id}_{\mathbf{Loc}} \to \iota \beta$ be the unit of the adjunction $\tuple{\beta, \iota, \alpha}$ where:
- $\operatorname{id}_{\mathbf{Loc}}$ denotes the identity functor on $\mathbf{Loc}$
For any $A \in \mathbf{Loc}$:
- $\eta_A: A \to \beta A$ is called a Stone-Čech Compactification of $A$.
Topological Space
Let $\mathbf{Top}$ denote the category of topological spaces.
Let $\mathbf{KHausTop}$ denote the category of compact Hausdorff spaces.
Let $\tuple{\beta, \iota, \alpha}$ be an adjunction of $\mathbf{KHausTop}$ and $\mathbf{Top}$ where:
- $\mathbf{\mathbf{Top}} \to \mathbf{\mathbf{KHausTop}}$ denotes a functor
- $\iota: \mathbf{\mathbf{KHausTop}} \to \mathbf{\mathbf{Top}}$ denotes the inclusion functor
Let $\eta:\operatorname{id}_{\mathbf{\mathbf{Top}}} \to \iota \beta$ be the unit of the adjunction $\tuple{\beta, \iota, \alpha}$ where:
- $\operatorname{id}_{\mathbf{\mathbf{Top}}}$ denotes the identity functor on $\mathbf{Top}$
For any $A \in \mathbf{Top}$:
- $\eta_A: A \to \beta A$ is called a Stone-Čech Compactification of $A$.
Tychonoff (Completely Regular) Space
User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Tychonoff Space
User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Product of Real Unit Intervals
User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Product of Real Intervals
User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Family of z-Ultrafilters
User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Largest Compactification
User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Maximal Ideal Space