User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Topological Spaces
Jump to navigation
Jump to search
Definition
Let $\mathbf{Top}$ denote the category of topological spaces.
Let $\mathbf{KHausTop}$ denote the category of compact Hausdorff spaces.
Let $\tuple{\beta, \iota, \alpha}$ be an adjunction of $\mathbf{KHausTop}$ and $\mathbf{Top}$ where:
- $\mathbf{\mathbf{Top}} \to \mathbf{\mathbf{KHausTop}}$ denotes a functor
- $\iota: \mathbf{\mathbf{KHausTop}} \to \mathbf{\mathbf{Top}}$ denotes the inclusion functor
Let $\eta:\operatorname{id}_{\mathbf{\mathbf{Top}}} \to \iota \beta$ be the unit of the adjunction $\tuple{\beta, \iota, \alpha}$ where:
- $\operatorname{id}_{\mathbf{\mathbf{Top}}}$ denotes the identity functor on $\mathbf{Top}$
For any $A \in \mathbf{Top}$:
- $\eta_A: A \to \beta A$ is called a Stone-Čech Compactification of $A$.
Also see
Sources
Johnstone