User:Leigh.Samphier/Topology/Definition:Stone-Čech Compactification/Topological Spaces

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbf{Top}$ denote the category of topological spaces.

Let $\mathbf{KHausTop}$ denote the category of compact Hausdorff spaces.


Let $\tuple{\beta, \iota, \alpha}$ be an adjunction of $\mathbf{KHausTop}$ and $\mathbf{Top}$ where:

$\mathbf{\mathbf{Top}} \to \mathbf{\mathbf{KHausTop}}$ denotes a functor
$\iota: \mathbf{\mathbf{KHausTop}} \to \mathbf{\mathbf{Top}}$ denotes the inclusion functor


Let $\eta:\operatorname{id}_{\mathbf{\mathbf{Top}}} \to \iota \beta$ be the unit of the adjunction $\tuple{\beta, \iota, \alpha}$ where:

$\operatorname{id}_{\mathbf{\mathbf{Top}}}$ denotes the identity functor on $\mathbf{Top}$


For any $A \in \mathbf{Top}$:

$\eta_A: A \to \beta A$ is called a Stone-Čech Compactification of $A$.


Also see


Sources

Johnstone