User:Leigh.Samphier/Topology/Equivalence of Definitions of Frame Isomorphism
![]() | This page needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $\struct {L_1, \vee_1, \wedge_1, \preceq_1}$ and $\struct {L_2, \vee_2, \wedge_2, \preceq_2}$ be frames.
The following definitions of the concept of Frame Isomorphism are equivalent:
Definition 1
Let $\phi: L_1 \to L_2$ be a (frame) homomorphism.
We say $\phi: L_1 \to L_2$ is a frame isomorphism if and only if $\phi : S_1 \to S_2$ is a bijection.
Definition 2
Let $\phi: S_1 \to S_2$ be a mapping.
We say $\phi: L_1 \to L_2$ is a frame isomorphism if and only if $\phi : L_1 \to L_2$ is an order isomorphism
Proof
Definition 1 implies Definition 2
Let $\phi : L_1 \to L_2$ be a bijective frame homomorphism.
From User:Leigh.Samphier/Topology/Inverse of Bijective Frame Homomorphism is Bijective Frame Homomorphism:
- $\phi^{-1}: L_2 \to L_1$ is a bijective frame homomorphism.
From User:Leigh.Samphier/Topology/Frame Homomorphism is Lattice Homomorphism:
- $\phi : L_1 \to L_2$ and $\phi^{-1} : L_2 \to L_1$ are lattice homomorphisms
From Lattice Homomorphism is Order-Preserving:
- $\phi : L_1 \to L_2$ and $\phi^{-1} : L_2 \to L_1$ are order-preserving
Hence $\phi : L_1 \to L_2$ is an order isomorphism by definition.
$\Box$
Definition 2 implies Definition 1
Let $\phi : \struct{A_1, \preceq_1} \to \struct{A_2, \preceq_2}$ be an order isomorphism.
By definition of order isomorphism:
- $\phi : L_1 \to L_2$ is an order-preserving bijection
Let $\phi^{-1} : A_2 \to A_1$ be the inverse of $\phi : A_1 \to A_2$.
From Inverse of Order Isomorphism is Order Isomorphism:
- $\phi^{-1} : L_2 \to L_1$ is an order isomorphism
$\phi$ is Arbitrary Join Preserving
Let:
- $A \subseteq A_1$
We have:
\(\ds \forall a \in A: \, \) | \(\ds a\) | \(\le\) | \(\ds \sup A\) | Definition of Supremum | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall a \in A: \, \) | \(\ds \map \phi a\) | \(\le\) | \(\ds \map \phi {\sup A}\) | Definition of Order-Preserving Mapping | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \sup \set{\map \phi a : a \in A}\) | \(\le\) | \(\ds \map \phi {\sup A}\) | Definition of Supremum | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) | \(\le\) | \(\ds \map {\phi^{-1} } {\map \phi {\sup A} }\) | Definition of Order-Preserving Mapping | ||||||||||
\(\text {(1)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) | \(\le\) | \(\ds {\sup A}\) | Definition of Inverse Mapping |
Also we have:
\(\ds \forall a \in A: \, \) | \(\ds \map \phi a\) | \(\le\) | \(\ds \sup \set{\map \phi a : a \in A}\) | Definition of Supremum | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall a \in A: \, \) | \(\ds \map {\phi^{-1} } {\map \phi a}\) | \(\le\) | \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) | Definition of Order-Preserving Mapping | |||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall a \in A: \, \) | \(\ds a\) | \(\le\) | \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) | Definition of Inverse Mapping | |||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \sup A\) | \(\le\) | \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) | Definition of Supremum |
Hence:
\(\ds \sup A\) | \(=\) | \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) | Ordering Axiom $(3)$: Antisymmetry applied to $(1)$ and $(2)$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \phi {\sup A}\) | \(=\) | \(\ds \map \phi {\map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} } }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \sup \set{\map \phi a : a \in A}\) | Definition of Inverse Mapping |
It follows that $\phi$ is arbitrary join preserving.
$\Box$
$\phi$ is Finite Meet Preserving
$\Box$
It follows that $\phi$ is a bijective lattice homomorphism by definition.
$\blacksquare$