User:Leigh.Samphier/Topology/Equivalence of Definitions of Frame Isomorphism

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {L_1, \vee_1, \wedge_1, \preceq_1}$ and $\struct {L_2, \vee_2, \wedge_2, \preceq_2}$ be frames.


The following definitions of the concept of Frame Isomorphism are equivalent:

Definition 1

Let $\phi: L_1 \to L_2$ be a (frame) homomorphism.


We say $\phi: L_1 \to L_2$ is a frame isomorphism if and only if $\phi : S_1 \to S_2$ is a bijection.


Definition 2

Let $\phi: S_1 \to S_2$ be a mapping.


We say $\phi: L_1 \to L_2$ is a frame isomorphism if and only if $\phi : L_1 \to L_2$ is an order isomorphism


Proof

Definition 1 implies Definition 2

Let $\phi : L_1 \to L_2$ be a bijective frame homomorphism.


From User:Leigh.Samphier/Topology/Inverse of Bijective Frame Homomorphism is Bijective Frame Homomorphism:

$\phi^{-1}: L_2 \to L_1$ is a bijective frame homomorphism.


From User:Leigh.Samphier/Topology/Frame Homomorphism is Lattice Homomorphism:

$\phi : L_1 \to L_2$ and $\phi^{-1} : L_2 \to L_1$ are lattice homomorphisms


From Lattice Homomorphism is Order-Preserving:

$\phi : L_1 \to L_2$ and $\phi^{-1} : L_2 \to L_1$ are order-preserving


Hence $\phi : L_1 \to L_2$ is an order isomorphism by definition.

$\Box$

Definition 2 implies Definition 1

Let $\phi : \struct{A_1, \preceq_1} \to \struct{A_2, \preceq_2}$ be an order isomorphism.


By definition of order isomorphism:

$\phi : L_1 \to L_2$ is an order-preserving bijection


Let $\phi^{-1} : A_2 \to A_1$ be the inverse of $\phi : A_1 \to A_2$.

From Inverse of Order Isomorphism is Order Isomorphism:

$\phi^{-1} : L_2 \to L_1$ is an order isomorphism


$\phi$ is Arbitrary Join Preserving

Let:

$A \subseteq A_1$


We have:

\(\ds \forall a \in A: \, \) \(\ds a\) \(\le\) \(\ds \sup A\) Definition of Supremum
\(\ds \leadsto \ \ \) \(\ds \forall a \in A: \, \) \(\ds \map \phi a\) \(\le\) \(\ds \map \phi {\sup A}\) Definition of Order-Preserving Mapping
\(\ds \leadsto \ \ \) \(\ds \sup \set{\map \phi a : a \in A}\) \(\le\) \(\ds \map \phi {\sup A}\) Definition of Supremum
\(\ds \leadsto \ \ \) \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) \(\le\) \(\ds \map {\phi^{-1} } {\map \phi {\sup A} }\) Definition of Order-Preserving Mapping
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) \(\le\) \(\ds {\sup A}\) Definition of Inverse Mapping


Also we have:

\(\ds \forall a \in A: \, \) \(\ds \map \phi a\) \(\le\) \(\ds \sup \set{\map \phi a : a \in A}\) Definition of Supremum
\(\ds \leadsto \ \ \) \(\ds \forall a \in A: \, \) \(\ds \map {\phi^{-1} } {\map \phi a}\) \(\le\) \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) Definition of Order-Preserving Mapping
\(\ds \leadsto \ \ \) \(\ds \forall a \in A: \, \) \(\ds a\) \(\le\) \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) Definition of Inverse Mapping
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \sup A\) \(\le\) \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) Definition of Supremum


Hence:

\(\ds \sup A\) \(=\) \(\ds \map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} }\) Ordering Axiom $(3)$: Antisymmetry applied to $(1)$ and $(2)$
\(\ds \leadsto \ \ \) \(\ds \map \phi {\sup A}\) \(=\) \(\ds \map \phi {\map {\phi^{-1} } {\sup \set{\map \phi a : a \in A} } }\)
\(\ds \) \(=\) \(\ds \sup \set{\map \phi a : a \in A}\) Definition of Inverse Mapping


It follows that $\phi$ is arbitrary join preserving.

$\Box$


$\phi$ is Finite Meet Preserving

$\Box$


It follows that $\phi$ is a bijective lattice homomorphism by definition.

$\blacksquare$