# Value of Vandermonde Determinant

## Theorem

### Formulation $1$

Let $V_n$ be the Vandermonde determinant of order $n$ defined as the following formulation:

$V_n = \begin {vmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n - 2} & {x_1}^{n - 1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n - 2} & {x_2}^{n - 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n - 2} & {x_n}^{n - 1} \end {vmatrix}$

Its value is given by:

$\ds V_n = \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}$

### Formulation $2$

Let $V_n$ be the Vandermonde determinant of order $n$ defined as the following formulation:

$V_n = \begin {vmatrix} x_1 & {x_1}^2 & \cdots & {x_1}^n \\ x_2 & {x_2}^2 & \cdots & {x_2}^n \\ \vdots & \vdots & \ddots & \vdots \\ x_n & {x_n}^2 & \cdots & {x_n}^n \end{vmatrix}$

Its value is given by:

$\ds V_n = \prod_{1 \mathop \le j \mathop \le n} x_j \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_j - x_i}$

## Source of Name

This entry was named for Alexandre-ThÃ©ophile Vandermonde.