Vandermonde Matrix Identity for Hilbert Matrix/Examples/3x3
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. In particular: polynomial root set You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
![]() | This article needs to be tidied. Please fix formatting and $\LaTeX$ errors and inconsistencies. It may also need to be brought up to our standard house style. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Tidy}} from the code. |
Example of Vandermonde Matrix Identity for Hilbert Matrix
Define polynomial root sets $\set {1, 2, 3}$ and $\set {0, -1, -2}$ for Definition:Cauchy Matrix because Hilbert Matrix is Cauchy Matrix.
Illustrate $3\times 3$ case for Vandermonde Matrix Identity for Hilbert Matrix and value of Hilbert matrix determinant:
\(\ds H\) | \(=\) | \(\ds {\begin{pmatrix} \frac 1 1 & \frac 1 2 & \frac 1 3 \\ \frac 1 2 & \frac 1 3 & \frac 1 4 \\ \frac 1 3 & \frac 1 4 & \frac 1 5 \\ \end{pmatrix} }\) | Hilbert matrix of order $3$ |
Then:
\(\ds H\) | \(=\) | \(\ds -P V_x^{-1} V_y Q^{-1}\) | Vandermonde Matrix Identity for Hilbert Matrix | |||||||||||
\(\ds \map \det H\) | \(=\) | \(\ds \dfrac 1 {2140}\) | Determinant of Matrix Product |
Details:
Define Vandermonde matrices
- $\ds V_x = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1^2 & 2^2 & 3^2 \\ \end{pmatrix}, \quad V_y = \begin {pmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & \paren {-1}^2 & \paren {-2}^2 \\ \end {pmatrix}$
Define polynomials:
- $\ds \map p x = \paren {x - 1} \paren {x - 2} \paren {x - 3}$
- $\ds \map {p_1} x = \paren {x - 2} \paren {x - 3}, \quad \map {p_2} x = \paren {x - 1} \paren {x - 3}, \quad \map {p_3} x = \paren {x - 1} \paren {x - 2}$
Define invertible diagonal matrices:
- $\ds P = \begin {pmatrix} \map {p_1} 1 & 0 & 0 \\ 0 & \map {p_2} 2 & 0 \\ 0 & 0 & \map {p_3} 3 \\ \end {pmatrix}, \quad Q = \begin {pmatrix} \map p 0 & 0 & 0 \\ 0 & \map p {-1} & 0 \\ 0 & 0 & \map p {-2} \\ \end {pmatrix}$
Then:
- $\ds P = \begin {pmatrix} \paren {1 - 2} \paren {1 - 3} & 0 & 0 \\ 0 & \paren {2 - 1} \paren {2 - 3} & 0 \\ 0 & 0 & \paren {3 - 1} \paren {3 - 2} \\ \end {pmatrix}, \quad Q = \begin {pmatrix} \paren {0 - 1} \paren {0 - 2} \paren {0 - 3} & 0 & 0 \\ 0 & \paren {-1 - 1} \paren {-1 - 2} \paren {-1 - 3} & 0 \\ 0 & 0 & \paren {-2 - 1} \paren {-2 - 2} \paren {-2 - 3} \\ \end {pmatrix}$
Determinant of Diagonal Matrix implies
- $\ds \map \det P = \paren {1 - 2} \paren {1 - 3} \paren {2 - 1}\paren {2 - 3} \paren {3 - 1} \paren {3 - 2} = -4$
- $\ds \map \det Q = \paren {0 - 1} \paren {0 - 2} \paren {0 - 3} \paren {-1 - 1} \paren {-1 - 2} \paren {-1 - 3} \paren {-2 - 1} \paren {-2 - 2} \paren {-2 - 3} = -8640$
Value of Vandermonde Determinant gives:
- $\ds \map \det {V_x} = \paren {3 - 2} \paren {3 - 1} \paren {2 - 1} = 2$
- $\ds \map \det {V_y} = \paren {-2 - \paren {-1} } \paren {-2 - 0} \paren {-1 - 0} = -2$
Determinant of Matrix Product and Definition:Inverse Matrix imply
- $\ds \map \det {V_x^{-1} } = \dfrac 1 {\map \det {V_x} }, \quad \map \det {Q^{-1} } = \dfrac 1 {\map \det Q}$
Then:
\(\ds \map \det H\) | \(=\) | \(\ds \map \det {-I} \map \det P \map \det {V_x^{-1} } \map \det {V_y} \map \det {Q^{-1} }\) | Determinant of Matrix Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^3 \dfrac {\map \det P \map \det {V_y} } {\map \det {V_x} \map \det Q}\) | $\map \det {\begin{matrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \\ \end{matrix} } = (-1)^3$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^3 \dfrac {\paren {-4} \paren {-2} } {\paren 2 \paren {-8640} }\) | inserting the four determinant equations | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {2140}\) | simplifying |
$\blacksquare$