Vector Cross Product is Anticommutative/Proof 2
Jump to navigation
Jump to search
Theorem
The vector cross product is anticommutative:
- $\forall \mathbf a, \mathbf b \in \R^3: \mathbf a \times \mathbf b = -\paren {\mathbf b \times \mathbf a}$
Proof
\(\ds \paren {\mathbf a + \mathbf b} \times \paren {\mathbf a + \mathbf b}\) | \(=\) | \(\ds \mathbf a \times \mathbf a + \mathbf a \times \mathbf b + \mathbf b \times \mathbf a + \mathbf b \times \mathbf b\) | Vector Cross Product Operator is Bilinear | |||||||||||
\(\ds 0\) | \(=\) | \(\ds 0 + \mathbf a \times \mathbf b + \mathbf b \times \mathbf a + 0\) | Cross Product of Vector with Itself is Zero | |||||||||||
\(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds -\paren {\mathbf b \times \mathbf a}\) | simplifying |
$\blacksquare$