Volume of Frustum of Right Circular Cone
Jump to navigation
Jump to search
Theorem
Let $F$ be a frustum of a right circular cone.
The volume $\VV$ of $F$ is given as:
- $\VV = \dfrac {\pi h \paren {a^2 + a b + b^2} } 3$
where:
Proof
From Volume of Frustum of Cone or Pyramid:
- $\VV = \dfrac {h \paren {A_1 + A_2 + \sqrt {A_1 A_2} } } 3$
where:
Here we have that $F$ be a frustum of a right circular cone.
Hence the bases of $F$ are circles.
From Area of Circle, the areas of the bases of $F$ are therefore:
- $A_1 = \pi a^2$
- $A_2 = \pi b^2$
Hence:
\(\ds \VV\) | \(=\) | \(\ds \dfrac {h \paren {A_1 + A_2 + \sqrt {A_1 A_2} } } 3\) | Volume of Frustum of Cone or Pyramid: see above | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {h \paren {\pi a^2 + \pi b^2 + \sqrt {\pi a^2 \pi b^2} } } 3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\pi h \paren {a^2 + b^2 + a b} } 3\) | after simplification |
Hence the result.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 4$: Geometric Formulas: Frustum of Right Circular Cone of Radii $a, b$ and Height $h$: $4.42$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 7$: Geometric Formulas: Frustum of Right Circular Cone of Radii $a, b$ and Height $h$: $7.42.$