Weak Existence of Matrix Logarithm
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Theorem
Let $T$ be a square matrix of order $n$.
Let $\norm {T - I} < 1$ in the norm on bounded linear operators, where $I$ the identity matrix.
Then there is a square matrix $S$ such that:
- $e^S = T$
where $e^S$ is the matrix exponential.
Proof
Define:
- $\ds S = \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n \paren {T - I}^n$
$S$ converges since $\norm {T - I} < 1$.
We have that $\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n \norm {T - I}^n$ is the Newton-Mercator Series.
This converges since $\norm {T - I} < 1$.
Hence the series for $S$ converges absolutely, and so $S$ is well defined.
Using the series definition for the matrix exponential:
\(\ds e^S\) | \(=\) | \(\ds I + S + \frac 1 {2!} S^2 + \frac 1 {3!} S^3 + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds I + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n \paren {T - I}^n + \frac 1 {2!} \paren {\sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n \paren {T - I}^n}^2 + \frac 1 {3!} \paren {\sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n \paren {T - I}^n}^3 + \cdots\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^S\) | \(=\) | \(\ds I + \paren {T - I} + c_2 \paren {T - I}^2 + c_3 \paren {T - I}^3 + \cdots\) | grouping terms by powers of $T - I$ | ||||||||||
\(\ds \) | \(=\) | \(\ds T + c_2 \paren {T - I}^2 + c_3 \paren {T - I}^3 + \cdots\) |
If $c_i = 0$ for $i \ge 2$, then $e^S = T$, and the result is shown.
The Newton-Mercator Series is a Taylor expansion for $\map \ln {1 + x}$.
When combined with the Power Series Expansion for Exponential Function, it gives:
\(\ds e^{\map \ln {1 + x} }\) | \(=\) | \(\ds 1 + \map \ln {1 + x} + \frac 1 {2!} \paren {\map \ln {1 + x} }^2 + \frac 1 {3!} \paren {\map \ln {1 + x} }^3 + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n x^n + \frac 1 {2!} \paren {\sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n x^n}^2 + \frac 1 {3!} \paren {\sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n - 1} } n x^n}^3 + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + x + c_2 x^2 + c_3 x^3 + \cdots\) | grouping terms by powers of $x$ |
But $e^{\map \ln {1 + x} } = 1 + x$.
Thus:
- $1 + x = 1 + x + c_2 x^2 + c_3 x^3 + \cdots \implies c_i = 0$
for $i \ge 2$.
$\blacksquare$
Also see
Sources
- 1974: Morris W. Hirsch and Stephen Smale: Differential Equations, Dynamical Systems and Linear Algebra Ch. $5$ $\S 3$, Problem $14$.