Werner Formulas/Sine by Cosine
Jump to navigation
Jump to search
Theorem
- $\sin \alpha \cos \beta = \dfrac {\map \sin {\alpha + \beta} + \map \sin {\alpha - \beta} } 2$
where $\sin$ denotes sine and $\cos$ denotes cosine.
Proof 1
\(\ds \) | \(\) | \(\ds \frac {\sin \paren {\alpha + \beta} + \sin \paren {\alpha - \beta} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {\sin \alpha \cos \beta + \cos \alpha \sin \beta} + \paren {\sin \alpha \cos \beta - \cos \alpha \sin \beta} } 2\) | Sine of Sum and Sine of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \sin \alpha \cos \beta} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sin \alpha \cos \beta\) |
$\blacksquare$
Proof 2
\(\ds \) | \(\) | \(\ds 2 \sin \alpha \cos \beta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2 \paren {\dfrac {\map \exp {i \alpha} - \map \exp {-i \alpha} } {2 i} } \paren {\dfrac {\map \exp {i \beta} + \map \exp {-i \beta} } 2}\) | Euler's Sine Identity and Euler's Cosine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \paren {\map \exp {i \alpha} - \map \exp {-i \alpha} } \paren {\map \exp {i \beta} + \map \exp {-i \beta} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 i} \paren {\map \exp {i \paren {\alpha + \beta} } - \map \exp {-i \paren {\alpha + \beta} } + \map \exp {i \paren {\alpha - \beta} } - \map \exp {-i \paren {\alpha - \beta} } }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \exp {i \paren {\alpha + \beta} } - \map \exp {-i \paren {\alpha + \beta} } } {2 i} + \frac {\map \exp {i \paren {\alpha - \beta} } - \map \exp {-i \paren {\alpha - \beta} } } {2 i}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map \sin {\alpha + \beta} + \map \sin {\alpha - \beta}\) |
$\blacksquare$
Also presented as
The Werner Formula for Sine by Cosine can also be seen in the form:
- $2 \sin \alpha \cos \beta = \map \sin {\alpha - \beta} + \map \sin {\alpha + \beta}$
Examples
Example: $2 \sin 30 \degrees \cos 10 \degrees$
- $2 \sin 30 \degrees \cos 10 \degrees = \sin 40 \degrees + \sin 20 \degrees$
Also see
- Werner Formula for Sine by Sine
- Werner Formula for Cosine by Cosine
- Werner Formula for Cosine by Sine
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.67$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): product formulae
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): product formulae
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Product formulae
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Product formulae