Area inside Astroid
Jump to navigation
Jump to search
Theorem
The area inside an astroid $H$ constructed within a circle of radius $a$ is given by:
- $\AA = \dfrac {3 \pi a^2} 8$
Proof
Let $H$ be embedded in a cartesian plane with its center at the origin and its cusps positioned on the axes.
By symmetry, it is sufficient to evaluate the area shaded yellow and to multiply it by $4$.
- $\begin{cases}
x & = a \cos^3 \theta \\ y & = a \sin^3 \theta \end{cases}$
Thus:
\(\ds \AA\) | \(=\) | \(\ds 4 \int_0^a y \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 4 \int_{x \mathop = 0}^{x \mathop = a} y \frac {\d x} {\d \theta} \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 4 \int_{x \mathop = 0}^{x \mathop = a} a \sin^3 \theta \, 3 a \cos^2 \theta \paren {-\sin \theta} \rd \theta\) | differentiating $a \cos^3 \theta$ with respect to $\theta$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 4 \int_{\theta \mathop = \pi / 2}^{\theta \mathop = 0} a \sin^3 \theta \, 3 a \cos^2 \theta \paren {-\sin \theta} \rd \theta\) | $x = 0$ when $\theta = \pi / 2$, $x = a$ when $\theta = 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 12 a^2 \int_0^{\pi / 2} \sin^4 \theta \cos^2 \theta \rd \theta\) | simplifying |
Simplifying the integrand:
\(\ds \sin^4 \theta \cos^2 \theta\) | \(=\) | \(\ds \frac {\paren {2 \sin \theta \cos \theta}^2} 4 \frac {2 \sin^2 \theta} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin^2 2 \theta} 4 \frac {2 \sin^2 \theta} 2\) | Double Angle Formula for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin^2 2 \theta} 4 \frac {1 - \cos 2 \theta} 2\) | Square of Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin^2 2 \theta - \sin^2 2 \theta \cos 2 \theta} 8\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {1 - \cos 4 \theta} {16} - \frac {\sin^2 2 \theta \cos 2 \theta} 8\) | Square of Sine |
Thus:
\(\ds \AA\) | \(=\) | \(\ds 12 a^2 \int_0^{\pi / 2} \paren {\frac {1 - \cos 4 \theta} {16} - \frac {\sin^2 2 \theta \cos 2 \theta} 8} \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 3 4 a^2 \int_0^{\pi / 2} \paren {1 - \cos 4 \theta} \rd \theta - \frac 3 2 a^2 \int_0^{\pi / 2} \sin^2 2 \theta \cos 2 \theta \rd \theta\) | Linear Combination of Definite Integrals | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 3 4 a^2 \intlimits {\theta - \frac {\sin 4 \theta} 4} 0 {\pi / 2} - \frac 3 2 a^2 \int_0^{\pi / 2} \sin^2 2 \theta \cos 2 \theta \rd \theta\) | Primitive of $\cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 3 4 a^2 \intlimits {\theta - \frac {\sin 4 \theta} 4} 0 {\pi / 2} - \frac 3 2 a^2 \intlimits {\frac {\sin^3 2 \theta} 6} 0 {\pi / 2}\) | Primitive of $\sin^n a x \cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {3 \pi a^2} 8 - \frac {3 a^2} {16} \sin 2 \pi - \frac {3 a^2} {12} \sin^3 \pi\) | evaluating limits of integration | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {3 \pi a^2} 8\) | $\sin 2 \pi = 0$ and $\sin^3 \pi = 0$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 11$: Special Plane Curves: Hypocycloid with Four Cusps: $11.10$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.21$: The Cycloid: Problem $6$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 9$: Special Plane Curves: Hypocycloid with Four Cusps: $9.10.$