Length of Arc of Astroid
Jump to navigation
Jump to search
Theorem
The total length of the arcs of an astroid constructed within a deferent of radius $a$ is given by:
- $\LL = 6 a$
Proof
Let $H$ be embedded in a cartesian plane with its center at the origin and its cusps positioned on the axes.
We have that $\LL$ is $4$ times the length of one arc of the astroid.
From Arc Length for Parametric Equations:
- $\ds \LL = 4 \int_{\theta \mathop = 0}^{\theta \mathop = \pi/2} \sqrt {\paren {\frac {\d x} {\d \theta} }^2 + \paren {\frac {\d y} {\d \theta} }^2} \rd \theta$
where, from Equation of Astroid:
- $\begin{cases}
x & = a \cos^3 \theta \\ y & = a \sin^3 \theta \end{cases}$
We have:
\(\ds \frac {\d x} {\d \theta}\) | \(=\) | \(\ds -3 a \cos^2 \theta \sin \theta\) | ||||||||||||
\(\ds \frac {\d y} {\d \theta}\) | \(=\) | \(\ds 3 a \sin^2 \theta \cos \theta\) |
Thus:
\(\ds \sqrt {\paren {\frac {\d x} {\d \theta} }^2 + \paren {\frac {\d y} {\d \theta} }^2}\) | \(=\) | \(\ds \sqrt {9 a^2 \paren {\sin^4 \theta \cos^2 \theta + \cos^4 \theta \sin^2 \theta} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3 a \sqrt {\sin^2 \theta \cos^2 \theta \paren {\sin^2 \theta + \cos^2 \theta} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 3 a \sqrt {\sin^2 \theta \cos^2 \theta}\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 a \sin \theta \cos \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {3 a \sin 2 \theta} 2\) | Double Angle Formula for Sine |
Thus:
\(\ds \LL\) | \(=\) | \(\ds 4 \frac {3 a} 2 \int_0^{\pi / 2} \sin 2 \theta \rd \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 a \intlimits {\frac {-\cos 2 \theta} 2} 0 {\pi / 2}\) | Primitive of $\sin a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 6 a \paren {-\frac {\cos \pi} 2 + \frac {\cos 0} 2}\) | evaluating limits of integration | |||||||||||
\(\ds \) | \(=\) | \(\ds 6 a \frac {-\paren {-1} + 1} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 6 a\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 11$: Special Plane Curves: Hypocycloid with Four Cusps: $11.11$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.21$: The Cycloid: Problem $7$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 9$: Special Plane Curves: Hypocycloid with Four Cusps: $9.11.$