Area of Right Parabolic Segment
Jump to navigation
Jump to search
Theorem
Let $ABC$ be a right parabolic segment where:
- $AB$ is the defining chord $\LL$ of $ABC$
- $C$ is the vertex of the defining parabola $\PP$ of $ABC$.
The area $\AA$ of $ABC$ is given by:
- $\AA = \dfrac {2 a b} 3$
where:
- $a$ is the length of the line segment $CF$, where $F$ is the point at which the axis of $\PP$ intersects $AB$
- $b$ is the length of the line segment $AB$.
Proof
Construct the triangle $\triangle ABC$:
From Quadrature of Parabola:
- $\AA = \dfrac 4 3 \triangle ABC$
From Area of Triangle in Terms of Side and Altitude, the area of $\triangle ABC$ equals $\dfrac {a b} 2$.
The result follows.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 4$: Geometric Formulas: Segment of a Parabola: $4.24$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 7$: Geometric Formulas: Segment of a Parabola: $7.24.$
- Weisstein, Eric W. "Parabolic Segment." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ParabolicSegment.html