Area of Segment of Circle
Jump to navigation
Jump to search
Theorem
Let $C$ be a circle of radius $r$.
Let $S$ be a segment of $C$ such that its base subtends an angle of $\theta$ at the center of the circle.
Then the area $\AA$ of $S$ is given by:
- $\AA = \dfrac 1 2 r^2 \paren {\theta - \sin \theta}$
where $\theta$ is measured in radians.
Proof
Let $BDCE$ be the segment $S$.
Let $b$ be the length of the base of $S$.
Let $BACE$ be the sector of $C$ whose angle is $\theta$.
The $\AA$ is equal to the area of $BACE$ minus the area of the isosceles triangle $\triangle ABC$ whose base is $b$.
Let $h$ be the altitude of $\triangle ABC$.
From Area of Sector, the area of sector $BACE$ is $\dfrac 1 2 r^2 \theta$.
From Area of Isosceles Triangle, the area of $\triangle ABC$ is $\dfrac 1 2 r^2 \sin \theta$.
Thus:
\(\ds \AA\) | \(=\) | \(\ds \frac 1 2 r^2 \theta - \frac 1 2 r^2 \sin \theta\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 r^2 \paren {\theta - \sin \theta}\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 4$: Geometric Formulas: Geometric Formulas: Segment of Circle of Radius $r$: $4.21$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): segment: 2.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): segment: 2.
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 7$: Geometric Formulas: Segment of Circle of Radius $r$: $7.21.$