Associated Legendre Function of the First Kind/Examples/2, 2
Jump to navigation
Jump to search
Example of Associated Legendre Function of the First Kind
Let $\map { {P_n}^m} x$ denote an associated Legendre function of the first kind.
Then:
- $\map { {P_2}^2} x = 3 \paren {1 - x^2}$
Proof
\(\ds \map { {P_n}^m} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n\) | Derivative Form of Associated Legendre Function of the First Kind | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map { {P_2}^2} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{2 / 2} } {2^2 2!} \dfrac {\d^4} {\d x^4} \paren {x^2 - 1}^2\) | setting $m = n = 2$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {1 - x^2} 8 \map {\dfrac {\d^4} {\d x^4} } {x^4 - 2 x^2 + 1}\) | Square of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {1 - x^2} 8 \paren {4!}\) | Nth Derivative of Nth Power where $n = 4$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 \paren {1 - x^2}\) | $4! = 24$ and simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 26$: Associated Legendre Functions: Associated Legendre Functions of the First Kind: $26.7$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Associated Legendre Functions of the First Kind: $28.55.$