Associated Legendre Function of the First Kind/Examples/2, 1
Jump to navigation
Jump to search
Example of Associated Legendre Function of the First Kind
Let $\map { {P_n}^m} x$ denote an associated Legendre function of the first kind.
Then:
- $\map { {P_2}^1} x = 3 x \paren {1 - x^2}^{1/2} = 3 x \sqrt {1 - x^2}$
Proof
\(\ds \map { {P_n}^m} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n\) | Derivative Form of Associated Legendre Function of the First Kind | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map { {P_2}^1} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } {2^2 2!} \dfrac {\d^3} {\d x^3} \paren {x^2 - 1}^2\) | setting $m = 1, n = 2$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } 8 \map {\dfrac {\d^3} {\d x^3} } {x^4 - 2 x^2 + 1}\) | Square of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{1 / 2} } 8 \paren {24 x}\) | Derivative of Power $3$ times | |||||||||||
\(\ds \) | \(=\) | \(\ds 3 x \paren {1 - x^2}^{1 / 2}\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 26$: Associated Legendre Functions: Associated Legendre Functions of the First Kind: $26.6$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Associated Legendre Functions of the First Kind: $28.54.$